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Abstract: Some of the new unique features of the MOLCAS quantum chemistry package version 7 are presented
inthis report. In particular, the Cholesky decomposition method applied to some quantum chemical methods is described.
This approach is used both in the context of a straight forward approximation of the two-electron integrals and in the
generation of so-called auxiliary basis sets. The article describes how the method is implemented for most known wave
functions models: self-consistent field, density functional theory, 2nd order perturbation theory, complete-active space
self-consistent field multiconfigurational reference 2nd order perturbation theory, and coupled-cluster methods. The report
further elaborates on the implementation of a restricted-active space self-consistent field reference function in conjunction
with 2nd order perturbation theory. The average atomic natural orbital basis for relativistic calculations, covering the whole
periodic table, are described and associated unique properties are demonstrated. Furthermore, the use of the arbitrary order
Douglas-Kroll-Hess transformation for one-component relativistic calculations and its implementation are discussed. This
section especially focuses on the implementation of the so-called picture-change-free atomic orbital property integrals.
Moreover, the ElectroStatic Potential Fitted scheme, a version of a quantum mechanics/molecular mechanics hybrid
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method implemented in MOLCAS, is described and discussed. Finally, the report discusses the use of the MOLCAS
package for advanced studies of photo chemical phenomena and the usefulness of the algorithms for constrained geometry
optimization in MOLCAS in association with such studies.

© 2009 Wiley Periodicals, Inc. J Comput Chem 31: 224–247, 2010

Key words: MOLCAS; ANO-RCC; RASPT2; ESPF; Cholesky decomposition; coupled cluster; Douglas-Kroll-Hess;
photo chemistry

Introduction

The origin of the MOLCAS* package can be traced back to the
novel work during the 1970s of the group of Roos1 at the Stock-
holm University, Sweden. Together with his students, J. Almöf,
P. E. M. Siegbahn, and U. Wahlgren, they developed improved
and novel methods for electron-integral evaluation (Molecule), the
direct configuration interaction technique,2 implemented single,
and multiconfigurational reference configuration interaction (SDCI
and MRCI),3 developed the single most successful version of the
multiconfigurational SCF method, the complete active space SCF
(CASSCF) method,4–6 derived new systematic Gaussian basis set
for molecular calculation,7–9 etc. Much of the work was inspired by
the young scientist’s visits to the quantum chemistry group at the
IBM Almaden research center in San Jose, headed by E. Clementi.
The work of the Stockholm group formed the backbone of the origi-
nal version of MOLCAS, which was presented the first time in 1989.
This, the first version of MOLCAS, had many similarities with the
Molecule-Sweden package, which for many years was the work
horse of the quantum chemistry group at NASA Ames. However,
developments during the 1990 and the following decade has made
MOLCAS into a more versatile and user-friendly program package
as compared with the original version, which would only run on
the IBM 3090 computers under the JCL operating system. Notable
upgrades were the introduction of the multiconfigurational reference
second order perturbation theory (CASPT2) approach10–12 and the
Multi-State CASPT2 (MS-CASPT2),13 improved two-electron inte-
gral evaluation,14, 15 methods for gradient evaluation,16, 17 geometry
optimization,18, 19 frequency calculations,20 extensions to additional
wave function methods, the generalization of the CASSCF to a
restricted active space (RASSCF),21, 22 the development of the
CASSCF state interaction method (CASSI),23 the introduction of
spin-orbit coupling (RASSI-SO),24 and improvements with respect
to single determinant methods, in particular it is worth to mention the
work on coupled-cluster theory.25 However, the MOLCAS package
was for a long time a package which only targeted highly correlated
calculations of rather small systems, although a DFT option has
for some time been included. The status of the MOLCAS package,
as of 2003, was at that time presented26 and the philosophy and
infrastructure behind the package was documented in a subsequent
publication.27

*MOLCAS has derived its name from two of the modules in the original
version, the Molecule integral generator of J. Almlöf and the CASSCF mod-
ule of B. O. Roos. Neither the Molecule nor the CASSCF module made their
way to the second version of MOLCAS, in which they were replaced with
more general substitutes. http://www.molcas.org

MOLCAS version 7, as compared with earlier versions, consti-
tutes a substantial improvement regarding the size of the systems
which can be handled by the various wave function models, the
versatility of the package, the applicability of the implemented
methods to the whole periodic table, improvements with respect
to the bottleneck within the CASSCF/CASPT2 paradigm—the
size of the so-called active space—implementation of a quantum
mechanics/molecular mechanics (QM/MM) model which can in
principle support any kind of MM force-fields and the applicabil-
ity of the package to significant parts of the lower excited states
as, for example, expressed by photochemistry. This report here will
present these new developments and extensions in a compact and
easy-to-understand way. The purpose of the article, however, is
not to be too detailed, but to summarize the methods and imple-
mentation into a single document. It should be mentioned that the
newest version of MOLCAS does not only include these reported
new features. Additional improvements as a simplified user input,
a graphical user interface, add-ons, improved tutorials, etc., are not
included in this report. Furthermore, some of the methods presented
here relates to parallelization. In that respect it should be noted
that the RASSCF and RASPT2 modules only include paralleliza-
tion with respect to the formation of Fock-matrices and transformed
two-electron repulsion integrals.

Cholesky Decomposition in MOLCAS

Storage and transformation of two-electron integrals from atomic
orbital (AO) to molecular orbital (MO) basis have been major
bottlenecks in previous versions of MOLCAS. As of version 7,
however, MOLCAS features the Cholesky decomposition (CD)
technique28, 29 which substantially reduces the effort involved in
two-electron integral handling.30–32 The CD is also used for gener-
ating auxiliary basis sets for the density fitting (DF)/resolution-of-
the-identity (RI) technique,33–38 which is available in MOLCAS-7
as well.39 The CD-based development in MOLCAS-7 has been pub-
lished in a number of research papers39–47 and a review will appear
soon (Pedersen et al., Theor Chem Acc, to be submitted).

Cholesky Decomposition of Two-Electron Integrals

The Cholesky representation of the two-electron integrals in AO
basis is given by30, 31

(µν|λσ) ≈
M∑

J=1

LJ
µνLJ

λσ , (1)
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where we have used Mulliken notation for the integrals and Greek
letters to denote AOs. The Cholesky vectors are computed from a
residual matrix in a recursive procedure according to

LJ
µν = [

�
(J−1)
[λσ ]J ,[λσ ]J

]−1/2
�

(J−1)
µν,[λσ ]J

, (2)

where the residual matrix is defined by

�
(J)
µν,λσ = (µν|λσ) −

J∑
K=1

LK
µνLK

λσ , (3)

and [λσ ]J is the index of the largest residual diagonal element at the
(J − 1)th recursion, i.e., the index of the parent product |λσ) giving
rise to the Jth Cholesky vector. We refer to the subset {|[λσ ]J)} of
the product functions as the Cholesky basis.

A symmetric positive semidefinite matrix,30 the residual matrix
satisfies the Cauchy-Schwarz inequality

∣∣�(J)
µν,λσ

∣∣ ≤
√

�
(J)
µν,µν�

(J)
λσ ,λσ . (4)

Introducing the decomposition threshold δ ≥ 0 and using

max
µν

(
�(M)

µν,µν

) ≤ δ, (5)

as stop criterion for the recursive procedure, we obtain from eq. (4)
that the integrals are represented with absolute accuracy δ:

∣∣�(M)
µν,λσ

∣∣ ≤ δ. (6)

It should be noted, however, that the subset of the integrals cor-
responding to the parent product functions is represented exactly
(within machine precision):

�
(M)
[µν]J ,[λσ ]K

= 0. (7)

This means that the “most important” (as defined by the CD
procedure) integrals are represented exactly and is a fundamental
reason why the CD technique is accurate even with rather large
values of the decomposition threshold.47

The computational bottleneck of the CD procedure is the calcu-
lation of the residual matrix, eq. (3). In an integral-direct approach,31

only those columns that give rise to Cholesky vectors are calculated,
meaning that only a fraction (usually 1–5%) of the integral matrix
is needed to generate the Cholesky representation. Calculation of
the residual matrix requires two steps in each recursion: calculation
of the integral column (µν|[λσ ]J) and subtraction of contributions
from previous Cholesky vectors. Which of the two steps is the more
expensive depends on the nature of the basis functions (number of
primitive Gaussians, angular quantum number) and on the value
chosen for the decomposition threshold. For basis sets with a large
number of primitive Gaussians and with high angular quantum num-
bers, the integral calculation step tends to dominate, whereas the

subtraction step usually dominates for smaller basis sets. The sub-
traction shows a computational complexity of NpM2 where Np is the
number of significant product functions |µν), as estimated using the
Cauchy-Schwarz inequality. Decreasing the decomposition thresh-
old (increasing accuracy) therefore leads to a computational penalty
scaling quadratically with the increase of the number of Cholesky
vectors. The Cholesky vectors are stored in a buffer in memory.
When the buffer is full, the vectors must be read back into memory
from disk, creating a potential I/O bottleneck which can be reduced
or avoided by increasing memory.

Damped prescreening based on eq. (4) is employed in each recur-
sion. Specifically, a product function |µν) is removed when the
following inequality is satisfied:

s
√

�
(J)
µν,µν�

(J)
max ≤ δ, (8)

where �
(J)
max is the largest residual diagonal and s ≥ 1 is the damp-

ing. The latter is chosen according to s ≈ 109δ for decomposition
thresholds above 10−8 and s = 1.0 for lower thresholds. As a conse-
quence of the damped prescreening, the dimension of the Cholesky
vectors is decreased in each recursion and even integrals with val-
ues below the decomposition threshold have a nonzero Cholesky
representation. As noted in ref. 31, the damping serves as a safe-
guard against rounding errors that may render the decomposition
numerically unstable.

SEWARD, the integral program of MOLCAS, is atomic shell-
driven.14 As a consequence, individual integral columns cannot be
efficiently calculated, and we compute instead the entire set of inte-
gral columns (µν|AB) where AB denotes the shell-pair to which the
largest residual diagonal element belongs. New Cholesky vectors
are then generated from this shell-pair as long as the largest residual
diagonal element within this shell-pair is at least a “span factor”
times the globally largest residual diagonal element. The default
span factor in MOLCAS is 0.01, meaning that the CD recursions
continue within the calculated shell-pair until the globally largest
diagonal is more than 100 times larger. This shell-driven integral-
direct approach has two consequences: first, the total number of
Cholesky vectors depends weakly on the chosen span factor and,
second, shell-pair integral columns may be calculated more than
once. The latter is, of course, particularly important for large basis
sets where the integral calculations are expensive.

To reduce the cost of integral recalculations, the decomposition
is performed in two steps. In the first step, all rows and columns
of the residual matrix corresponding to diagonal elements smaller
than the decomposition threshold are discarded in each recursion. In
other words, all diagonals that cannot give rise to a Cholesky vector
are removed, minimizing the dimension of the residual matrix to
be calculated in each recursion. The computational cost of integral
recalculations and Cholesky vector I/O is thus minimized due to the
low dimension of the residual matrix. The essential output from the
first step is the Cholesky basis, i.e., the mapping from the vector
index J to the parent product index λσ . Given this mapping, the
full-dimension Cholesky vectors are calculated in the second step
according to eq. (2) with the prescreening of eq. (8). Integral recal-
culations are thus avoided and Cholesky vector I/O minimized in
the second step.

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 1. The ratio M/N as a function of decomposition threshold for
ANO-L-PVXZ (X = D, Q) AO basis sets. M is the number of Cholesky
vectors and N the number of AO basis functions. The ratio is calculated
as an average for the molecules of Set I (a subset of the G2-97 test set)
of ref. 47.

In a parallel execution, the rows of the residual matrix are (stat-
ically) distributed among the processes. In a given recursion, each
process calculates the corresponding rows of the integral matrix and
performs the subtraction of previous Cholesky vectors according to
eq. (3). This requires that the Cholesky vector elements correspond-
ing to the selected integral columns [LK

λσ in eq. (3)] are broadcast
from the process holding them. This design ensures that the memory
requirement per process is minimized and that Cholesky vector I/O
can be avoided by increasing the number of compute nodes (increas-
ing available memory). Once the CD has completed, the Cholesky
vectors are stored on disk for later use. For the disk storage, how-
ever, complete Cholesky vectors are distributed among the nodes,
i.e., L1 is stored on node 0, L2 on node 1, L3 on node 2, and so on.

The Cholesky basis generally contains both one- and two-center
product functions. We have implemented the so-called one-center
CD (1C-CD)39 in which no two-center functions are allowed to enter
the Cholesky basis. As shown in ref. 47, the two-center functions
are needed for high accuracy (low decomposition threshold), in par-
ticular with lower-quality AO basis sets. As can be seen in Figure 1,
the computational advantage (lower M) of 1C-CD increases with
decomposition threshold and is particularly pronounced for the
double-ζ (lower quality) basis set. The scaling of M with system
size is linear, as seen from Figure 2. As the scaling of the number of
AO basis functions, N , is trivially linear, this implies that the ratio
M/N is constant, as also shown in Figure 2.

Analytic gradients of the integrals have been defined for the
Cholesky representation.43 At the moment, however, analytic gra-
dients can only be calculated in conjunction with nonhybrid DFT
and the 1C-CD option. Numerical gradients can be calculated with
all CD-based options, of course.

Quantum Chemistry with Cholesky Decomposition

Having performed the CD of the two-electron integral matrix, the
resulting Cholesky vectors can be used for HF, DFT, MP2, scaled
opposite spin (SOS) MP2, RASSCF, CASSCF, RASSI, CASPT2,

and CCSD(T) calculations. The Cholesky vectors are used directly
to construct Fock matrices and two-electron integrals in MO basis.

Inactive and active Fock matrices are calculated in AO basis
according to41, 44

Fµν =
∑

J

LJ
µν

∑
λσ

LJ
λσ Dλσ − 1

2

∑
J

∑
k

LJ
µkLJ

νk , (9)

where k runs over either inactive or active orbital indices and D is
the corresponding density matrix. The half-transformed Cholesky
vectors are calculated according to

LJ
µk =

∑
ν

LJ
µνCνk , (10)

where C is the MO coefficient matrix. Although the Coulomb
part of eq. (9) scales quadratically with system size, the exchange
part, including the transformation of eq. (10), scales cubically. We
have therefore developed the “Local Exchange” (LK)39 algorithm,
which reduces the scaling to quadratic by using localized MOs and
prescreening based on rigorous upper bounds. To reduce the com-
putational cost of orbital localization, MOLCAS uses the so-called
Cholesky MOs obtained by performing a CD of the density matrix.40

Two-electron integrals in MO basis are calculated from trans-
formed Cholesky vectors according to

(pq|rs) =
∑

J

LJ
pqLJ

rs, (11)

where p, q, r, s denote MOs, and

LJ
pq =

∑
µ

Cµp

∑
ν

LJ
µνCνq. (12)

Figure 2. The number of Cholesky vectors M, number of AO basis
functions N , and the ratio M/N (multiplied by 1000) as functions of
the number of glycine units in linear glycine chains. The basis set is
cc-pVDZ and the decomposition threshold is δ = 10−4.
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Only those integrals that are needed by a given method
are computed according to eq. (11), thus significantly reducing
the computational cost compared with conventional calculations.
MOLCAS generates the (ai|bj) integrals on-the-fly while calculat-
ing the MP2 energy correction [i, j refer to occupied orbitals, a, b to
virtual orbitals], whereas the MO integrals needed by the CASPT2
method are generated, written to disk, and read back into mem-
ory in the CD-CASPT2 implementation. Although the CD-MP2
code is significantly faster than the conventional implementation,
the CD-CASPT2 code mainly reduces the wall-time of the cal-
culation due to decreased I/O.45 Both CD-MP2 and CD-CASPT2
can be applied to substantially larger systems than the conventional
programs, as exemplified in refs. 45, 48, 49. As described in more
detail below, the new CD-based implementation of coupled cluster
theory in MOLCAS can use Cholesky vectors in two ways. Either the
MO integrals are calculated and stored on disk prior to the iterative
CCSD procedure or they are calculated on-the-fly.

Density Fitting and Auxiliary Basis Sets from
Cholesky Decompositions

The DF approximation is given by33–38

(µν|λσ) ≈
∑
PQ

(µν|P)G−1
PQ(λσ |Q), (13)

where P, Q refer to auxiliary basis functions, G−1
PQ = (G−1)PQ, and

GPQ = (P|Q). As the G matrix is symmetric positive definite, its
inverse can be Cholesky decomposed, i.e.

G−1
PQ =

∑
K

ZK
P ZK

Q . (14)

Combining eq. (14) and eq. (13), and introducing the DF vectors

RK
µν =

∑
P

(µν|P)ZK
P , (15)

we obtain the expression

(µν|λσ) ≈
∑

K

RK
µνRK

λσ , (16)

which has the same form as the Cholesky representation, eq. (1).
The DF vectors are generated by SEWARD and stored in the same
manner as Cholesky vectors. Thus, the MOLCAS modules using
Cholesky vectors can also be executed using DF vectors.

MOLCAS generates auxiliary basis sets on-the-fly, as described
in refs. 39, 46 and benchmarked along with CD in ref. 47. Two
types of CD-based auxiliary basis sets are available in MOLCAS:
the atomic CD (aCD)39 and the atomic compact CD (acCD).46 The
aCD set is generated by a decomposition of the atomic two-electron
integral matrix, identifying the resulting Cholesky basis (see above)
as the auxiliary functions for the given atom type and basis set.
To make the integral evaluation more efficient, “missing” angular

components of the product functions of the Cholesky basis are
added to complete the shell structure of the auxiliary basis (see
refs. 39, 46 for further details). The acCD set is generated from the
corresponding aCD set by removing linear dependence in the prim-
itive Gaussian product basis by performing a CD of an “angular
free” integral matrix, as described in ref. 46. The number of aux-
iliary functions is thus the same for aCD and acCD sets, but the
number of primitive Gaussians is reduced in the latter, making the
generation of DF vectors faster for large basis sets. The accuracies
of the aCD and acCD sets are almost identical, though.46, 47

As the aCD and acCD auxiliary basis sets are constructed by CD
of the atomic integral matrix, they may be used with any AO basis
set. Moreover, they may be used in conjunction with any quantum
chemical method. In short, the aCD and acCD auxiliary basis sets are
unbiased. Constructed on-the-fly, the aCD and acCD basis sets are
generated automatically in MOLCAS, requiring no other user-input
than the decomposition threshold (if the default is not sufficient).
Care must be exercised for small AO basis sets on hydrogen and
helium atoms; however, in the absence of polarization functions in
the AO basis set, the aCD and acCD sets solely contain s-functions
on hydrogen and helium atoms, leading to unusually large errors in
total energies.46

ANO-RCC: A Basis Set for the Entire Periodic Table

MOLCAS is a program system that allows calculations in the rela-
tivistic regime. As described earlier, the Douglas-Kroll-Hess (DKH)
transformation of the Dirac Hamiltonian is used in a two-component
formulation of the relativistic wave function. The scalar part of the
DKH Hamiltonian replaces the one-electron nonrelativistic Hamil-
tonian and all methods that are used in nonrelativistic calculations
will automatically include these effects. However, the basis sets that
are normally used cannot be transferred to the relativistic regime.
The contraction of the inner shells are different and this will affect
the structure also for the valence orbitals. It is therefore necessary to
develop specific basis sets where the DKH Hamiltonian is included
when the basis set is constructed.

Here we have developed such basis sets for the atoms H-Cm
based on the concept of density averaged Atomic Natural Orbitals
(ANOs). Such basis sets have been available in MOLCAS in the non-
relativistic regime for the atoms H-Zn, as the ANO-L and ANO-S
basis sets.50–53 The new basis sets have been labelled ANO-RCC to
indicate that they are relativistic (R) and that semicore electrons have
been included in the correlation treatment (CC). The densities used
for the construction of the ANOs have been obtained from multicon-
figurational wave functions have been used (CASSCF) with the most
important orbitals in the active space, where dynamic correlation is
treated using second order perturbation theory (CASPT2).10, 11, 54

This approach was used because it is general and can be applied to
all electronic states independent of their spin and space symmetry.
The basis sets have been generated without the inclusion of spin-
orbit coupling which we do not believe to be very important for the
shape of the orbitals (with the exception of the heavier main group
elements, where the present approach will not work well anyway).
The ANO-RCC basis sets have been published in a series of papers
during the years 2003–2008.55–59

Journal of Computational Chemistry DOI 10.1002/jcc
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Table 1. Size of the Primitive Basis Sets and the Contraction Range.

Atoms Primitive Max # of ANOs Atoms Primitive Max # of ANOs

H 8s4p3d1f 6s4p3d1f Rb–Sr 23s19p11d4f 10s10p5d4f
He 9s4p3d2f 7s4p3d2f Y–Cd 21s18p13d6f4g2h 10s9p8d5f4g2h
Li–Be 14s9p4d3f1g 8s7p4d2f1g In–Xe 22s19p13d5f3g 10s9p8d5f3g
Be–Ne 14s9p4d3f1g 8s7p4d3f2g Cs–Ba 26s22p15d4f 12s10p8d4f
Na 17s12p5d4f 9s8p5d2f La 24s21p15d5f3g 11s10p8d5f3g
Mg 17s12p6d2f 9s8p6d2f Ce–Lu 25s22p15d11f4g2h 12s11p8d7f4g2h
Al 17s12p5d3f 9s9p5d3f Hf–Au 24s21p15d11f4g2h 11s10p8d6f4g2h
Si–Ar 17s12p5d4f2g 8s7p5d4f2g Hg 25s22p16d12f4g2h 10s10p9d6f4g2h
K 21s16p5d4f 10s9p5d3f Tl–Rn 25s22p16d12f4g 11s10p9d6f4g
Ca 20s16p6d4f 10s9p6d4f Fr–Ra 28s25p17d12f 12s11p8d5f
Sc–Zn 21s15p10d6f4g2h 10s9p8d6f4g2h Ac–Pa 27s24p18d14f6g3h 13s11p10d8f6g3h
Ga–Kr 20s17p11d5f2g 9s8p6d4f2g U–Cm 26s23p17d13f5g3h 12s10p9d7f5g3h

The Average Densities

The primitive Gaussian functions used to construct the basis sets are
presented in Table 1. For atoms up to Zn the ANO-L primitives were
used. The primitives for the other atoms were based on the Faegri
primitive sets.60 They were extended with more diffuse functions in
an even-tempered way. Higher angular momentum functions were
added and exponents were optimized for the ground state atoms (at
the CASPT2 level of theory) using an even-tempered extension with
a ratio of 0.4.

The construction of the ANOs is based on an average density
matrix. Calculations with the primitive basis set were performed for:
each atom in its ground state, in one excited state, for the positive
ion, and for most atoms also the negative atom. Polarization effects
were included by calculations on the ground state atom in an electric
field. For the main group elements calculations were instead made
for the diatomic molecule. More details about the selected electronic
states can be found in the original articles.55–59 An average density
matrix was constructed as:

ρav =
∑

i

ωiρi, (17)

where ρi are the density matrices obtained from the different
CASPT2 wave functions. Usually, the same weight was used for
all states included in the averaging. The average density matrix is
diagonalized and ANOs with occupation numbers larger than about
10−6 define maximum size of the basis set. For more details, we
refer to the basis set library in the MOLCAS package.

Atomic Ionization Energies, Electron Affinities, and Polarizabilities

As examples of results that have been obtained during the construc-
tion of the basis set we present below the ionization energies(IEs)
of all atoms in the range H-Cm, selected electron affinities, and
polarizabilities for spherical atoms. The IEs are shown in Figure 3.
Calculations have been performed with the largest basis set but
almost identical results are obtained at the VQZP level. These
CASPT2 results have an RMS error of 0.15 eV and a maximum
error of 0.28 eV (for the Tc atom). The errors are mainly due to the

CASPT2 approximation and to a lesser extent to limitations in the
basis set.

Electron affinities (EAs) were computed for atoms for which
positive values have been reported in Handbook in Chemistry and
Physics.62 They are presented in Figure 4. The RMS error is 0.17
eV and the maximum error is 0.40 eV (for the Fe atom). The RMS
error would have been smaller if it was not for a few atoms where
the difficulties in computing the EA were especially large. Most
striking is the Fe atom with a measured EA of 0.15 eV. The computed
value was −0.25 eV. The negative value was obtained by forcing
the negative ion to have the electronic configuration d7s2 with all
3d orbitals equal. The larger errors naturally occur for atoms with
small EAs where more diffuse functions are needed for an accurate
description of the electronic structure of the negative ion. For the
same reason, the computed EAs in almost all cases are smaller than
experiment.

Finally, we show in Figure 5 the computed polarizabilities for
the spherical atoms. They have been obtained using finite field per-
turbation theory at the CASPT2 level of theory. The basisset is
clearly adequate for this purpose. All computed values are within

Figure 3. Ionization energies for the atoms H-Cm (in eV). Experimental
values from ref. 61.
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Figure 4. Electron affinities for some selected atoms (in eV). Experi-
mental values from ref. 62.

the error limits of experiment.62 More information about the per-
formance of the ANO-RCC basis sets can be found in the basis set
library (www.molcas.org) from where these basis sets can also be
downloaded.

Relativistic Douglas-Kroll-Hess Energies and Properties

The nonrelativistic electronic Schrödinger equation provides only an
approximate description of reality, which is only valid in those cases
where the speed of the electrons is small compared to the speed of
light. As a consequence, standard Schrödinger quantum mechanics
is only sufficiently accurate for molecules containing atoms with
small nuclear charges like carbon or oxygen in which the electrons
do not acquire a speed that approaches a significant portion of the
speed of light. In chemistry, a quantum mechanical model theory is
sought valid for the full periodic table of the elements. In principle,
this is accomplished by a first-quantized many-electron theory based
on Dirac’s theory of the electron.63

In this so-called four-component theory, the one-electron part of
the Fock operator is given by the Dirac Hamiltonian,

hD = cα · p + (β − 14)mc2 + V , (18)

which has been shifted by the rest energy mc214 to match the non-
relativistic energy scale. The three components of the vector α

contain the three Pauli spin matrices on the off-diagonal positions.
The diagonal matrices 14 and β contain the entries (1, 1, 1, 1) and
(1, 1, −1, −1), respectively. As usual, p represents the momentum
operator and c and m denote the speed of light and the rest mass
of the electron, respectively. The potential V is simply given by the
instantaneous electron–nucleus Coulomb interaction if we neglect
the interaction of the electrons and if magnetic and retardation
contributions are not taken into account. Because of the (4 × 4)-
structure of the Dirac Hamiltonian, the molecular orbitals become
four-component molecular spinors. Compared with one-component

Schrödinger-based orbitals, these 4-spinors require quite some alter-
ation of the algorithmic structure of a one-component quantum
chemistry program apart from the fact that the computational effort
increases. It is therefore desirable to find a representation of relativis-
tic one-electron Hamiltonians which are sufficiently accurate and
easy to interface with efficient one-component quantum chemical
methods.

A large body of numerical evidence demonstrated that quasi-
relativistic Hamiltonians in combination with multiconfiguration
wave-function approximations yields an efficient method of suf-
ficient overall accuracy for chemical purposes.64–66

The quasi-relativistic Hamiltonian employed according to this
MOLCAS philosophy of consistent accuracy comprises the impor-
tant kinematic contribution covered by the scalar-relativistic
Douglas–Kroll–Hess (DKH) Hamiltonian67, 68 as well as efficient
treatments of spin–orbit coupling via the atomic mean-field integral
method and perturbation theory.24

The central idea of the DKH unitary transformation technique is
to block-diagonalize the Dirac Hamiltonian hD by a suitably chosen
unitary transformation U

hbd = UhDU† =
(

h+ 0
0 h−

)
=

∞∑
k=0

(
E (+)

k 0
0 E (−)

k

)
, (19)

to eliminate the small components of the molecular 4-spinors which
would otherwise give rise to the unwanted negative-energy (often
called positronic) states. The electronic bound and continuum states
are completely described by the operator h+, which can be decom-
posed into E (+)

k operators featuring a well-defined order k in the
external potential V .

In DKH theory, the unitary transformation U is decomposed
into a sequence of transformations . . . U2U1U0, which produces the
E (+)

k step by step. An expansion in terms of the formal parame-
ter 1/c, which is identical to the fine-structure constant in atomic
units, is ill-defined69 and yields singular operators like the Pauli
Hamiltonian, which is valid only in perturbation-theory treatments

Figure 5. CASPT2 polarizabilities for the spherical atoms. Experimen-
tal values from ref. 62.
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of relativistic effects. The expansion of hbd, using the external poten-
tial V as perturbation parameter, does not give singular operators and
can be used variationally.69 The well-known relativistic terms of the
Pauli Hamiltonian, like the mass–velocity and Darwin operators, are
recovered from the DKH Hamiltonian after 1/c expansion. Hence,
the variationally stable DKH Hamiltonians are an ideal substitute
for the Pauli Hamiltonian and its ingredients, which are now only
of historical importance.

Except for the first unitary transformation U0, which must be
chosen to be the free-particle Foldy–Wouthuysen transformation,69

each unitary transformation Ui can be parameterized in terms of
an anti-Hermitian operator to be chosen in such a way as to elim-
inate the off-diagonal coupling terms in the Dirac Hamiltonian.
This parameterization can be written in terms of a Taylor series
expansion in the most general fashion.70 In actual calculations, a
set of coefficients needs to be chosen for this expansion under the
condition that unitarity is still preserved. Up to fourth order in V ,
the resulting Hamiltonians are independent of this choice, whereas
higher-order Hamiltonians are affected by the choice of parameters.
This parameter dependence is, however, negligible71 and vanishes,
of course, at infinite order. The arbitrary-order DKH method72 has
been implemented in its scalar-relativistic one-electron variant in the
MOLCAS program package. A conceptual review of the method can
be found in ref. 73. Five different parameterizations are available in
MOLCAS, namely, the optimum, the square-root, the Cayley, the
McWeeny, and the exponential parameterizations.

The unitary transformation technique that is at the heart of DKH
theory requires not only the Hamiltonian to be unitary-transformed
but any operator ô. For a sum of one-electron operators this reads

〈ô〉 =
∑

ij

γij
〈
ψDKH

i

∣∣(UôU†)∣∣ψDKH
j

〉
, (20)

where ψDKH
i denotes the DKH orbitals and γij is a generalized

occupation number (i.e., an element of the first-order density
matrix to be more precise). If this change of picture is not consis-
tently considered, numerical artifacts appear in molecular property
calculations that are called picture-change errors.74, 75 These arti-
facts can be reduced to any desirable order in DKH theory76

and an arbitrary-order algorithm77 has been implemented into the
MOLCAS program package.78

It is an interesting feature of magnetic-field-free scalar-
relativistic one-electron DKH theory that the resulting DKH Hamil-
tonian and DKH property operators can be calculated almost
solely from the nonrelativistic integral matrices. Only two addi-
tional types of one-electron integral matrices are required, namely,
{〈χµ|p ·Vp|χν〉} and {〈χµ|p · ôp|χν〉}, where χµ and χν are the usual
atom-centered Gaussians. The transformation would, however, be
more complicated for magnetic-field-dependent properties and for
properties that require the perturbed wave function.79

Currently, all one-electron electric-field-like molecular property
integrals are subject to a DKH transformation if this is switched
on for the one-electron part of the Fock operator. The efficiency of
the implementation has been demonstrated for electric-field gradi-
ents,78 which are most prone to picture-change artifacts compared
with other electric-field-like properties.77 It is important to note
that for every physical observable the change of picture must be

Figure 6. Principal component of the diagonalized electric field gra-
dient tensor EFG in HAt (in a.u.) obtained at the At nucleus from
high-order DKH(n, n) calculations with n = 2, . . . , 7 according to data
presented in ref. 80 The results depend on whether the At nucleus
is assumed to be finite or point-like. Note the characteristic oscillat-
ing convergence behavior of the DKH series. The legend contains the
nonrelativistic result given for comparison.

taken into account. This is also true for the DKH density,80 which
cannot be simply obtained by adding squared DKH orbitals. For
instance, the present implementation in MOLCAS allows one to
calculate accurate parameters relevant to Mössbauer spectroscopy.81

To demonstrate the convergence properties of the DKH series, we
present in Figure 6 data for the principal component of the diago-
nalized electric field gradient tensor evaluated at the At nucleus in
HAt from ref. 80.

The RASPT2 Method

Nondynamic and Dynamic Correlation

Quantitative results by ab initio quantum mechanical methods
requires a more or less accurate description of the electronic cor-
relation. In many cases, e.g., for structure optimization, this can be
achieved by a Kohn-Sham density functional method, DFT, using a
correlation energy density parametrized as a local function of vari-
ables such as the electronic density, spin density, and their gradients.
Such methods differ by the choice of this function, and while they
have the merit of a computational complexity of similar order as
Hartree-Fock, or even less if the Hartree-Fock exchange does not
have to be computed, DFT methods remain unreliable or useless
when this function is not accurate enough. For higher accuracy, the
Coupled Cluster method with perturbative triples, CCSD(T), is the
usual choice, but can be too expensive in terms of computer time.
The cheaper perturbative second order Møller-Plesset method, MP2,
can be used and may, or may not, be better than DFT, depending on
application and choice of DFT functional.

The above methods will fail when multiconfigurational effects
are of importance or when the calculations should treat with similar
accuracy a variety of electronic structures. The multiplet states of
transition metals give rise to a multitude of interacting configura-
tions when they are involved in bonding. Multiple bonds usually
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have a component, such as π bonds of most molecules or δ bonds
between transition metals, which has fractional character. Excited
states almost always involve several different electronic configura-
tions, and for photochemistry the most interesting reaction paths
are often those which pass through regions of swift changes of the
adiabatic electronic states.

Traditionally, the correlation effects are classified as dynamic or
nondynamic correlation. This classification is by no means strict,
nor is it additive. The nondynamic correlation can be stabiliz-
ing or destabilizing, depending on the state. It describes a global
electronic structure that cannot be properly modelled by a single-
determinant wave function. The dynamic correlation, on the other
hand, is regarded as resulting mainly from the additional stabiliza-
tion by the ability of electrons to simultaneously avoid each other,
with small and local effects in the electronic structure. In such a
view, the dynamic correlation is always stabilizing.

A method that allows a flexible description of non-dynamic
correlation is the Complete Active Space Self-Consistent Field
(CASSCF) method. It is well suited for dealing with nondynamic
near-degeneracy effects, thereby being able to treat electronically
excited molecules, bond dissociation, radicals, transition metal com-
pounds, etc., in the same way and with almost uniform accuracy. The
CASSCF method is in principle open-ended, in the sense that a more
accurate calculation can always be obtained by increasing the num-
ber of correlated orbitals. However, the number of configurations
can grow dramatically with such an increase, and for molecules it is
not possible to include more than a fraction of dynamic correlation in
this way (In fact, the CASSCF model often serves as the operational
definition of nondynamic correlation). New approaches, whereby
in effect very large CI expansions can be used without the need for
explicit representation of each individual CI coefficient,82–84 offer a
possible way to allow larger active spaces, but these are still exper-
imental and it is probable that the dynamic correlation must still be
treated by separate calculations.

Dynamic correlation effects “on top” of CASSCF, and including
its interplay with the non-dynamic correlation, using, e.g., DFT or
Coupled-Cluster methods, is either not technically possible or are
still impractical for large molecular systems, even if there are devel-
opment under way in this direction. On the other hand, the MP2
method has been extended such that it can compute a perturbative
correction to CASSCF. This has been implemented as so-called
CASPT2 (CAS Perturbation Theory through second order), and the
combination CASSCF/CASPT2 has turned out to be very successful
for a large variety of problems. There are also other approaches to
such corrections. Celani et al.85 made a very large calculation of the
Cr2 bonding using a combined CI/PT2 approach, and compare with
CASPT2 and with another perturbation scheme, called NEVPT2.86

The combination of CASSCF and CASPT2 is almost always nec-
essary, as CASSCF alone has very limited ability to handle dynamic
correlation. Once that the CASSCF has taken care of nondynamic
correlation, the remaining dynamic correlation is much easier to
deal with. It is still large and variable enough that it must usually be
included, but can be treated perturbatively.

The CASSCF/CASPT2 method is quite complicated in its details
and implementation, but it has now reached a mature state and
has been shown to yield accurate results for ground and electroni-
cally excited states of molecules including atoms across the whole
periodic table and for arbitrary molecular structures.87–94

CASSCF is in principle a Multiconfiguration Self-Consistent
Field (MCSCF) method, which means that it simultaneously opti-
mizes both orbitals and CI coefficients for a wave function composed
of many configurations. All possible configurations are included
which can be formed by distributing a specified number of active
electrons among a subset of occupied orbitals, the active orbitals,
in a way consistent with spin and symmetry of the state. To the
user, this presents a calculation that can be specified similarly as a
closed-shell Hartree-Fock or DFT, in terms of basis set and number
of electrons. It differs, because also the number of orbitals with full
and with fractional occupation, called inactive and active orbitals,
respectively, must be specified, together with the spin and point
group irrep (symmetry type) of the state(s) to compute. It can, and
often does, compute wave functions and energies for many states
simultaneously. The orbitals are then optimized to give the lowest
possible average energy of these states, whereas the CI expansion
coefficients are optimized to describe the individual states.

Although such calculations are in principle possible for arbi-
trary states and molecules, there remain practical limitations. The
most frustrating is the limited size of the active space—the number
of orbitals that must be allowed the freedom of variable occupa-
tion. It is possible to correlate a few electrons in a large number of
orbitals (like in a Multireference CI calculation, say), but usually
the number of correlated (active) electrons is comparable with the
number of active orbitals, and there is then a drastic increase in the
size of the CI expansion with the number of active orbitals. One
may have to reduce ones ambitions and compromize, and a calcu-
lation that is barely possible can still be missing active orbitals of
importance. Unfortunately, compromizing by omitting even one or
two orbitals from the preferred active space often results in opti-
mization problems of similar kind as for the early selected MCSCF
calculations.

The RASSCF/RASPT2 Concept

When CASSCF/CASPT2 is impractical due to a large number
of configurations, restrictions on the CI expansion space can
be applied. In the RASSCF (Restricted, instead of Complete)
method,21, 22 the number of active orbitals, can be much increased
by subdividing the active space into three parts, denoted RAS1,
RAS2, and RAS3. The CI space is most easily described as aris-
ing from a smaller primary set of configurations by allowing also
some excitations from this space. In the primary space, the RAS1
orbitals are fully occupied, the RAS3 orbitals are unoccupied, and
the RAS2 orbitals play the role of active orbitals for the primary con-
figurations, which should be those that are essential for describing
the nondynamic correlation. The full set of configurations are then
those that differ from the primary set by allowing at most a specified
number of electrons to be excited out of the RAS1 space, and at most
a specified number of electrons excited into the RAS3 space. The
full set of configurations thus described is used in the calculation;
there is no difference in treatment of primary and excited configu-
rations, and this subdivision is done just to describe the structure of
the CI space.

This method was implemented from the start in the currently
used program, but it has been used mostly for CASSCF calcula-
tions, which are thus regarded as a special case of RASSCF. The
reason is partly that true RASSCF calculations usually require some
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Figure 7. The copper-bis(µ)oxo complex.

experimentation and “hands-on” preparation of starting orbitals to
converge to an acceptable solution, and that convergence can be
slow and capricious. The extension of the CASPT2 concept to com-
pute perturbative dynamic correlation also from an unperturbed
wave function of the RASSCF type is naturally called RASPT2.
A first implementation was made by Celani and Werner95 in a
multireference configuration interaction, (MRCI) program.

In contrast to CASPT2, there is yet little experience of the more
general RASPT2, but it has now been implemented as a modification
of the CASPT2 program used in MOLCAS, and was found useful,
e.g., in the study of some copper complexes of biological interest.
It has been found that, in order to properly describe the relative
energetics, a second d-shell with correlating orbitals is necessary.
This requires ten active orbitals per transition metal atom, in addition
to any further active orbitals needed for excited states and/or bond
breaking. The copper-bis(µ)oxo complex in Figure 7 could not be
well described with less then 32 active orbitals with 28 electrons.
A CASSCF wave function would have comprised on the order of
1017 determinant functions, but the calculation could be done to
satisfaction using RASSCF/RASPT2.96

Apart from the obvious advantage of allowing a larger number of
active, i.e., nondynamically correlated orbitals, there are complica-
tions that the user should be aware of. While the CASSCF/CASPT2
method is now a standard tool for many types of calculations,
it is not a “black box” method. This is even more true for
the RASSCF/RASPT2 combination, and a user may need some
background of technical details.

RASPT2: Technical Issues

At present, a CASPT2 or RASPT2 calculation can be roughly
divided up into three phases: computing a zeroth-order Hamilto-
nian for the perturbation expansion; solving the equation system
that gives the amplitudes describing the perturbation; and finally
using these to compute energies and other properties of interest.

In principle, CASPT2 and Multi-State CASPT2 solves a set of
equations of the usual Rayleigh-Schrödinger type

(
Ĥ0 − E0

)∣∣�(1)
〉 = (

Ĥ − E0
)∣∣�(0)

〉
(21)

∣∣�(1)
〉 =

M∑
P=1

cPX̂P

∣∣�(0)
〉

(22)

where Ĥ0 is an approximation to Ĥ , which is a second-quantization
representation of the true Hamiltonian. �(0) is the unperturbed wave

function, which is a RASSCF wave function. �(1) is the first-order
wave function, which is parametrized in terms of a set of excitation
operators, {X̂P}, acting on �(0), and E0 is the energy expectation
value of the RASSCF wave function. The right-hand side is con-
tained in the so-called interacting space, which is spanned by all
wave functions generated by the terms of the Hamiltonian when
acting on �(0), orthogonal to �(0) itself. Identically the same space
is spanned by the terms comprising the expansion of �(1), which
means that the equation can be solved exactly provided that the
interaction space is a stable space for the action of Ĥ0 − E0.

This parametrization is very much smaller than an equivalent
expansion in terms of individual Slater determinants, because each
term is comprised of a number of contributing determinants gen-
erated from �0. As a typical application, consider a CASSCF
calculation with 12 active electrons in nA = 12 active orbitals,
singlet, which has nI = 40 inactive orbitals and 400 basis func-
tions, thus nV = 348 virtual orbitals. The wave function consists
of about 800,000 determinants; the number of determinants in the
interacting space would be on the order of 1015 determinants, but the
number of parameters M is just slightly larger than for correspond-
ing MP2 or CCSD calculations from a single determinant. Even so,
the equation system is much too large for direct solution, unless
simplified.

The ideal simplification would be a diagonal equation matrix,
like for usual MP2. For a number of reasons, this is not quite pos-
sible for a multiconfigurational �(0). First, the �(0) function can
then not be the eigenfunction of a one-electron Hamiltonian, which
is required by the perturbation equations. This is, however, rather
simple to fix, by taking Ĥ0 to be a Fock-type Hamiltonian, but remov-
ing by projection any coupling between �(0) and its complement.
Second, the Ĥ0 should be a continuous function of �(0), but not of
its representation in terms of orbitals, as these can vary more or less
arbitrarily while still (by varying the CI expansion) representing the
same wave function. The program must then be prepared for the fact
that such a Fock matrix is not necessarily diagonal in the RASSCF
orbital basis. This is not a very difficult problem, and the CASPT2
program solves it by recomputing internally the CI expansion to
correspond to the internally used orbitals, and these can be chosen
such as to diagonalize the inactive/inactive, the active/active, and the
virtual/virtual subblocks of the Fock matrix, thus defining at least
quasi-canonical orbitals and orbital energies.

The remaining nonzero Fock matrix elements are usually quite
small. Assume for a while that they are. Then, a third problem is that
even with a diagonal one-electron Hamiltonian, the representation
of the Ĥ0 − E0 operator is far from diagonal. However, it turns out
that if the remaining nonzero coupling elements of the Fock matrix
can be neglected, the equation system can be factorized into diagonal
parts, at the price of an initial full diagonalization of a few matrices.
The equation system can be blocked up into subsets, classified by
the number of electrons excited from the inactive space, and the
number excited into the virtual space, by the excitation operators.
The blocks are of varying size. As an example, there is on the order
of n3

AnV excitation operators which transfer an electron from the
active to the virtual space, as a double excitation of this nature also
must excite an electron within the active space. By diagonalizing
a matrix of size n3

A × n3
A, these equations can be factorized into an

active and an inactive part, yielding MP2-like equations, which can
be immediately solved.
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In the above example, it turns out that two large matrix diagonal-
izations dominate. In order to generate the 1728×1728 matrices, we
must compute up to three-body density matrices (with active indices
only), and then diagonalize two such matrices: the time taken is a
matter of seconds, if a good linear algebra library is used. How-
ever, the work scales as the number of determinants times n3

A for the
density matrices, and then n9

A for the matrix diagonalization. Dou-
bling the active space will take 500 times as long time for this step,
even if the number of determinants is kept reasonable by applying
RAS restrictions. Even this size is acceptable, but going further is
costly.

Returning now to the remaining nonzero coupling elements of
the Fock matrix, these introduce coupling of the equations. However,
the equation system can still be solved, by using a Preconditioned
Gradient (PCG) solver. This turns out to solve the equation system,
in most cases in about 8 to 10 iterations.

Thus, the RASSCF/RASPT2 method is able to form the required
matrices, as long as the number of determinants can be kept reason-
able (a few million determinants, say), and diagonalize them, as
long as the n9

A time does not become prohibitively large.
There is one important caveat related to the use of average-

state optimized RASSCF wave functions. For the RASPT2, similar
restrictions as for CASPT2 apply in the diagonalization of the one-
electron Hamiltonian (essentially a Fock-type matrix, giving orbital
energies if diagonalized), but now they also invalidate orbital rota-
tions between the different RAS subspaces. The remaining coupling
terms between matrix blocks are taken care of, in the CASPT2 case,
by the PCG iterations. In the RASPT2 case, the coupling between
RAS subspaces is not handled this way, but these elements are
ignored. They are generally quite small, for single-state optimized
wave functions, but may become large for average-state calculations.
This is easily seen in smaller experiments, where the allowed num-
ber of RAS1 holes and RAS3 electrons can be increased until the
calculation becomes formally identical to a full CASPT2 calcula-
tion, yet the results differ. This difference is caused by the inability,
in the RAS case, to remove subspace coupling within the active
space.

As the correlation completely within the active space (such as a
double excitation from the RAS1 to the RAS3 orbitals) is assumed
to be sufficiently handled at the RASSCF level, additional such
excitations are not included in the RASPT2. For a CASSCF wave
function, such excitations would be outside of the interacting space,
as the unperturbed state has already been obtained as an eigenstate of
the CI. But in the RASSCF case, such excitations will be necessary if
the restrictions are too restrictive. Also this problem will in general
become more severe with average-state calculations. Including such
excitations in the RASPT2 is not infeasible, but technically com-
plicated. Also, within the current formulation of the Ĥ0, this would
necessitate computing four-body density matrix elements, which is
very costly for large active spaces.

RASPT2 Summary

In conclusion, the RASSCF/RASPT2 method is obviously useful in
the cases where the size of the active space is otherwise preventing a
regular CASSCF/CASPT2 calculation. However, there is still a lack
of experience with regard to the proper way of doing these calcula-
tions. What has been already observed is that the number of RAS1

Figure 8. 1-cyanonaphtalene/pyridine exciplex.

holes and RAS3 electrons should be even, and RAS2 orbitals and
electrons are used for qualitatively correct description of any mul-
ticonfigurational character and/or configuration differences among
states. This also makes sense if the RAS1 and RAS3 spaces are
regarded to compute correlation of a mixed dynamic/nondynamic
character, or dynamic correlation that is strongly coupled to the non-
dynamic correlation. So far, the approach has usually been to allow
two holes in RAS1 and two electrons in RAS3, which is usually
denoted as “SD”, and if affordable, four of each (SDTQ). However,
for good reasons, the orbital optimization in the RASSCF becomes
problematic in the latter case. We would recommend that SDTQ
calculations are performed using RASSCF orbitals from the SD
calculation, without further reoptimization. Also, what about calcu-
lations with, e.g., up to four holes, but allowing only two electrons?
Also, is the “even-number” restriction always the best? The field is
open for experiments.

For a final illustration, consider a recent study [Roos, private
communication] of the exciplex shown in Figure 8. This is a stable
molecule as long as it remains in an electronically excited state,
but once deexcited it falls apart. The potential energy curves of
the three lowest states are shown in Figure 9, and are very similar
using CASPT2 and RASPT2. The CASPT2 result was obtained
with great effort, almost at the limit of what can be done. The
RASSCF/RASPT2 is fairly fast and well behaved. The relevant part
of the potential curves is the region around equilibrium of the upper
(excited) states, and the dissociative lower (ground state) curve.
These parts are virtually the same for CASPT2 as for RASPT2,
whereas some small discrepancies can be seen for the excited states
at the longer CN distances.

Coupled Cluster Techniques in MOLCAS

The Coupled Cluster (CC) theory is one of the most powerful
tools for obtaining accurate molecular energies and molecular
properties with a high and controlled accuracy. As Čížek’s for-
mulation of this theory for many–electron systems in 1966, we
have witnessed impressive development of this approach.97–102 The
key point behind the success of the CC method lies in express-
ing the wave function in an exponential form, |�〉 = eT |�0〉,
where T is a many–electron excitation operator and |�0〉 is a ref-
erence wave function. Most routine CC calculations exploit the
single–determinant Hartree–Fock wave function as a reference. The
progress in the CC formalism with a many–determinant reference
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Figure 9. The potential energy with varying C–N distance, for CASPT2 and RASPT2.

or more general Multi-Reference (MR) wave function, reason-
able methods for the treatment of quasi-degenerate systems, is
impressive98, 102–107 but MR CC methods still remain demanding
for large–scale applications. Therefore, we feel that for treating
quasi-degenerate systems, general potential energy surface and dis-
sociation processes, CASPT2, RASPT2, MR-CI, and similar meth-
ods, available in MOLCAS, are still preferable. On the other hand,
when the system can be well represented by a single determinant
reference (or by a defined fixed linear combination of a few determi-
nants), CC methods yield accurate results in a straightforward and
computationally efficient way.

The wave function expressed in an exponential form leads to
faster convergence of the energy and of the wave function compared
with wave functions based on the linear expansion ansatz. Also, the
exponential ansatz guarantees that the method is size–extensive.
The most widely used single–determinant CC method for accurate
molecular calculations is CCSD(T)108 in which the excitation oper-
ator T in CCSD is approximated as T = T1 + T2. The amplitudes
of the single and double excitation operators, tai , tab

ij , are optimized
iteratively, and are exploited in the next step for a perturbative treat-
ment of triples.109 Most demanding steps in CCSD scale as N2

o N4
v

and N3
o N3

v . Computational requirements for noniterative triples scale
as N3

o N4
v and N4

o N3
v , fortunately in a single (noniterative) step. No is

the number of occupied orbitals (OO), Nv is the number of virtual
orbitals (VO). N is used if there is no need to distinguish between
occupied, virtual, or total number of orbitals. The next step in the
hierarchy of CC methods is the full iterative account of triples in
CCSDT110 in which T is approximated as T = T1 + T2 + T3.
The method needs summations over eight indices in an iterative
process and storing triples amplitudes. To alleviate computational
demands of the full iterative CCSDT, various approximations of
the disconnected clusters in the exponential expansion of eT1+T2+T3

were introduced109, 111 leading to methods like CCSDT-1, CCSDT-
2, CCSDT-3. Approximations keep the hierarchy of the orders of
the CC wave function.100

For the Coupled Cluster correlation energy, ECC, we need only
the single and double excitation operators amplitudes, tai and tab

ij .
The energy formula is the same irrespective of the approximation
of T beyond T = T1 + T2:

ECC = 〈
�0

∣∣[HN e(T1+T2)
∣∣�0

〉]
C

= 〈
�0

∣∣[HN
(
T1 + T2 + 1/2T2

1

)∣∣�0
〉]

C (23)

HN is the Hamiltonian in the second quantization form, the index
C means that only connected diagrams are considered in the dia-
grammatic representation of eq. 23.97–101 Much more demanding
is calculation of the excitation amplitudes needed in eq. 23. Equa-
tions for α-excited amplitudes are obtained by projecting the wave
function onto the respective 〈�α| excited state determinant, i.e.,

〈�α|[HN eT |�0〉]C = 0. (24)

Also here is the exponential expansion restricted due to the fact,
that HN contains merely one– and two–electron terms. When pro-
jecting onto the double excitation equations in CCSD amplitude
equations, no higher than products of Tn operators representing
quadruple excitations are needed. Similarly restricted are equations
defining higher excitations amplitudes. In spite of this restriction, in
CCSDT and higher level CC methods the number of terms increases
tremendously and the story starts to be very complicated. Algebraic
representation can be obtained by using diagrammatic techniques
and the second quantization formalism, leading to the string-based
coupled cluster theory and automated generation of computer codes,
as pioneered by Li and Paldus98, 112 and fully exploited by Kallay
and Surjan.113 Another advantage of the diagrammatic representa-
tion of CC equations is its transparency. It is particularly useful for
the wave function analysis98–101 when considering approximations
within a particular selection of the excitation operator T . What we
would like to stress here is the fact that the CC theory allows a hier-
archy of the order–by–order approximations to the wave function
and the energy in terms of the perturbation theory, which is a key
for a controlled accuracy.

Clearly, CC methods, as most other wave–function (WF) quan-
tum chemistry methods, cannot compete in efficiency with DFT
methods. Presently, DFT methods dominate the computational
chemistry calculations of large molecules because their scaling with
the number of electrons is more favorable. Yet the importance of the
wave function methods as a tool for obtaining accurate results with
controlled accuracy can be hardly overestimated. Moreover, reli-
able CC or other WF data serve as benchmarks for DFT methods
for which controlled accuracy is more difficult. Progress in DFT
brings plenty of different functionals, often developed to describe
specific problems or particular molecular properties. Obviously, it
is preferable if CC reference data are available for larger molecules
which are closer to species calculated by less demanding DFT
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calculations. To serve this purpose better, we need CC methods,
particularly CCSD(T) with enhanced efficiency within MOLCAS.

Open–Shell Calculations

The open–shell CC program in MOLCAS was primarily devel-
oped for efficient treatment of the high–spin systems which can
be well represented by a single–determinant Restricted Open–
shell Hartree–Fock (ROHF) reference. The two determinant CCSD
method is introduced in MOLCAS for treating excited singlets.114

As the contribution from triples is still missing, this part of the code
is not widely used so far. Starting point of our high–spin implementa-
tion is the spin–orbital formulation of Stanton et al.115 Fully relying
on the spin-orbital formulation means, first, lower efficiency, as one
has to manage spin–orbitals instead of orbitals and, second, result-
ing CCSD(T) energy is affected by the spin contamination even if
we use the ROHF reference orbitals. We also note that the ROHF
reference function is not uniquely defined. There is certain degree
of freedom in construction of the one–electron part of the Hamilto-
nian, fR, which does not change the SCF energy, but affects orbital
energies. The iterative CCSD procedure itself is fully invariant to
splitting of the Fock operator f = fR + u. However, perturbative
energy terms are not, due to using orbital energies in denominators.
Therefore, also noniterative T3 contribution, evaluated in a pertur-
bational manner, slightly depends on the selection of the reference
function and the denominator. For details, see e.g. ref. 116,117 and
careful discussion in ref. 118

The ROHF reference function is an eigenfunction of the spin
operators S2 and Sz, but the CC wave function exp(T)|�0〉 is not, if
the CC expansion (or the T operator) is not complete. The magni-
tude of the spin contamination diminishes with higher levels of the
excitation operators. Amplitudes of the single and double excitation
operators in CCSD, tai , tab

ij , must be spin adapted. Spin adapta-
tion (SA) also reduces the number of independent parameters (i.e.,
excitation amplitudes), by about a factor of three for CCSD, and
enhances the efficiency, if fully exploited. In our implementation
in MOLCAS we have profited from the work by Takahashi and
Paldus.119 We employ an approximate SA, particularly the sim-
plest form in which only T2 amplitudes, labelled by inactive and
secondary orbitals are adopted (active orbitals would be singly occu-
pied MOs, using the terminology of CASSCF). This approximate
method116, 117 preserves most of the advantages of the spin adapta-
tion, is sufficiently accurate (compare with exact results by Gauss
and Szalay120) and the formulation is the same for any multiplet.
Effects of the spin–adaptation in molecular properties are usually
small. More difficult cases, like CCSD(T) calculation of the electron
affinity of the CN or O2 molecules require SA for accurate results.

Efficiency of CC Calculations

The present version of the MOLCAS package contains two imple-
mentations of CCSD(T) method: An older code, described already
in previous MOLCAS paper26 and a new one, based on Cholesky
decomposition of the two–electron integrals. The old implementa-
tion of the CCSD method was based on the formulation115 which
exploits spin–orbital formalism aimed toward minimizing the over-
all number of floating-point operations. The code exploits orbital
spatial symmetry and is compatible with both RHF and ROHF ref-
erence functions. It is optimal though for open–shell molecules only,

whereas a different algorithm could exploit simplifications arising
in the closed–shell case. Program handles arrays up to the size
of N2

o N2
v in an unsegmented form, which ensures relatively small

computational overhead. This feature, combined with the efficient
matrix–matrix oriented formulation and BLAS (level 3) routines
guarantees high performance of the arithmetical part. Being com-
pletely MO based, this algorithm required storing all MO integrals
(proportional to N4) on disk. Also memory consumption cannot be
arbitrarily reduced, as the N2

o N2
v arrays are treated as unsegmented.

Moreover, the way the code was parallelized, allowed efficient (close
to linear) scaling only up to 8–16 nodes. All these factors cause
serious limitations of its applicability. Typically, calculations do not
exceed 500 virtual orbitals and the performance strongly depends
on the computer hardware, the number of the correlated electrons,
computational symmetry, and the distribution of molecular orbitals
within irreducible representations of the symmetry point group. To
further enhance the applicability of the CCSD(T) method, a com-
pletely new code was implemented. It is based on two novel ideas,
mainly the Cholesky decomposition of two electron integrals and
the segmentation (or blocking) of the virtual orbital space (VOS).

To reduce or, eventually, completely eliminate the memory lim-
itations and to utilize efficient parallelization we decided to split
the VOS into N ′ segments, each having Nv ′ = Nv/N ′ orbitals.
Memory requirements are dramatically reduced, since for all inter-
mediates having at least one virtual index, we can work with their
fragments with reduced dimension of Nv ′ instead of Nv. This affects
mostly the time consuming N6 matrix multiplications, which are
split into N ′2 “independent” subjobs of almost the same size. As
a byproduct, splitting offers a possibility for the efficient (almost
linear) parallelization, employing up to N ′2 computational nodes.
However, parallelization and segmentation of the VOS brings in
some additional overhead, due to repeated (mostly I/O) opera-
tions connected with the segmentation in the matrix multiplication
process. The only internode transfer required in this new CCSD
algorithm is the transfer of T1 and T2 amplitudes in each itera-
tion. The wall–clock time needed for this transfer increases with the
number of parallel nodes, though less than linearly. Thus, due to
this connection of segmentation and the number of parallel tasks,
proper N ′ needs to be selected (presently as a user-defined param-
eter) to meet the memory requirements and to ensure efficient
parallelization.

Cholesky decomposition of integrals cannot, in general, reduce
the scaling of the most time consuming steps in the CC methods.
However, storing only the (MO-transformed) Cholesky vectors alle-
viates one important bottleneck of the CCSD(T) approach, e.g., the
storage of the 2-electron integrals, and offers additional flexibility
whenever the reconstruction of these integrals is needed. This con-
cerns mainly the (VV |VV) (scaling as N4

v ) and (OV |VV) (scaling
as N3

v No) integral types, where V stands for arbitrary index of vir-
tual orbital and O for the occupied one. A different treatment to
avoid the disk bottleneck, widely used in other CCSD codes, is so
called “integral direct” algorithm,121 which essentially calculates
on–the–fly all the required AO integrals. These approaches have,
however, a disadvantage compared with our MO Cholesky vectors
based CCSD code that, the CCSD equations are solved in the AO
basis and cannot profit so much from the truncation of the virtual
orbital space either via OVOS method of Frozen Natural Orbitals,
see further.
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In our new CCSD code, two basic algorithms for treating the
most demanding (VV |VV) integrals are implemented and are avail-
able on user’s choice. Both employ segmentation governed by the
size of the (V ′V ′|V ′V ′) block. In the first approach we do not store
any integral files larger than N2

o N2
v on the disk and desired integral

blocks are recalculated from Cholesky vectors, eq. 12, on the fly.
This yields enormous savings of the disk space, but overall arithmeti-
cal demands increase. On the other hand, this “purely CD based”
approach, with suppressed I/O and extended arithmetics can better
exploit modern multi-core architecture of the nodes, than the “inte-
gral based” one. In the alternative “integral based” approach we
precalculate most of the MO integrals (including (VV |VV)) from
the Cholesky vectors, eq. 12, before the CCSD iterative procedure
and store them on the disk. Taking advantage of how the Cholesky
decomposition of the two-electron integrals is implemented in the
parallel version of MOLCAS, namely that Cholesky vectors are
generated on each computational node in blocks according to the
segmented auxiliary index, precalculation of above mentioned inte-
grals can be efficiently parallelized as well. CCSD equations are
then solved essentially in the “traditional,” MO–based way. This
“integral based” algorithm is preferable either if there is an abun-
dance of the disk space, or in the massively parallel runs, where
due to the way the algorithm is implemented, only a small por-
tion of the MO integrals needs to be stored on each parallel node.
For smaller calculations it is typically faster than “purely CD based”
approach, however, for truly large scale calculations with N2

o compa-
rable to M (dimension of the Cholesky auxiliary index), “purely CD
based” approach becomes preferable. MO transformed Cholesky
vectors are also employed in the elimination of tedious manipula-
tions with the (OV |VV) integrals. Several terms, containing this type
of integrals, can be treated together with terms containing (VV |VV)

integrals in a single step. The rest of these terms can be reformulated
using LJ

pq vectors. Even if the scaling is not reduced, any manipula-
tions with (OV |VV) integrals can be fully avoided in this way. For
example, the contribution

tab
ij ←

∑
c

(ai|bc)tc
j (25)

can be performed as

AJ
bj =

∑
c

LJ
bctc

j (26)

tab
ij ←

∑
J

LJ
aiA

J
bj (27)

Procedure 26–27 needs MNoN2
v + MN2

v N2
o operations, i.e., about

M/Nv times more than procedure 25, however manipulations with
(OV |VV) integrals is completely eliminated. The excess of the
arithmetics is not large, because all terms of this kind scale at
most as N5.

Generally, efficiency of parallelization of the CCSD algorithm
depends on the size of the system. It is efficient, if the “wall–clock
portion” of calculation of the N6 steps on each node is larger than the
overhead resulting mostly from the internode data transfer, which
scales basically as N4. The larger the system is, the more efficient

is the parallelization, as the calculation spends less time with the
data transfer. For a systems with about 1000 basis functions, our
new CCSD code is efficient even for hundreds of parallel nodes.
Performance of the new code will be described in details elsewhere
(Neogrády et al., to be published).

For systems with large number of correlated electrons, the non-
iterative (T) part becomes by far the most time consuming step.
For evaluation of the (T) contribution, our new CCSD code was
extended with the essential routines adapted to MOLCAS from the
code programmed by Noga and Valiron.122 Also here, segmentation
of the VOS is used. Algorithm for (T) can be very well parallelized,
because it can be split into large number of independent subjobs,
with almost no communication among the nodes. Number of subjobs
depends on the number of occupied orbitals, not on N ′. Much more
efficient parallelization can be achieved, compared to the CCSD
step, which can to some extent compensate its order–of–magnitude
higher scaling (N7), almost prohibitive for large calculations.

The new suite of CC codes is presently fully implemented only
for closed shell systems in the spin integrated form123 with the
minimized number of arithmetic operations. A code, with a similar
capabilities, for open–shell systems is currently under development.
Several groups tried to resolve limitations of conventional CCSD(T)
approaches. Gordon,124 Pulay125, 126 and Bartlett127 and their
coworkers have announced new implementations of the CCSD(T)
codes optimal for massive parallelization and memory requirements.
Comparison of the efficiency of various implementations is not
available to us. Concerning new approaches for perturbative triples,
several appealing attempts were published during the past few
years. A common feature of these approaches is the decomposition
(either in the Laplace or Cholesky fashion) of the energy denomi-
nators. Although the Cholesky decomposition–based approach by
Koch et al.128 seems to be more efficient for systems with high
ratio of occupied to virtual orbitals, Laplace decomposition–based
approaches suggested by Scuseria and Head-Gordon groups utilize
prescreening of certain intermediates transformed to either Natu-
ral Orbitals123, 129 or into localized, atom-labelled projected orbital
basis130). Both approaches have capability of reducing the scaling of
perturbative triples from N7 to N5, but more robust implementations
are desirable for extensive applications.

Optimizing and Reducing the Space of Virtual Orbitals (OVOS)

Cholesky decomposition and high level of parallelism is a prerequi-
site for using CCSD(T) within MOLCAS for larger applications than
it was possible before. Nevertheless, we still need to look at alterna-
tive ways leading to reduced computational demands. Unfavorable
scaling with the number of virtual orbitals N4

v in most difficult steps
in CCSD and triples makes calculations with large Nv quickly pro-
hibitive. Another bottleneck is the number of occupied orbitals when
we need to correlate large number of electrons. Large Nv frequently
occurs in calculations with extended (diffuse) basis sets for accu-
rate calculations of, say, response properties, excited (particularly
Rydberg) states, electron affinities, dispersion interactions, etc. Do
we really need an extended full space of virtual orbitals selected with
no condition other than being orthogonal to (canonical) HF occupied
orbitals? The simplest way, deleting just a few virtuals with highest
orbital energies is of little help. Truncation of VOS to a significant
fraction, say one half, may already reduce the N4

v steps by a factor
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of 16. This can be achieved by a suitable rotation of virtuals. We can
construct such a transformation of virtual orbitals that “maps” the
effect of the full space of virtuals into a smaller subspace without
significantly loosing the accuracy. We tested several optimization
criteria in previous work25 based on the idea of using Optimized
Virtual Orbital Space (OVOS) proposed long ago by Adamowicz
and Bartlett.131, 132 Our newly implemented optimization is based
on the maximum overlap of the wave function in the full virtual
orbital space (VOS) and the wave function in the truncated OVOS
space. The simplest implementation employs the first order wave
function, but the same idea can be used for any wave function.25

For example, the maximum overlap based on the CCSD wave func-
tion can in principle be used for optimization of OVOS for higher
levels of the CC theory, like CCSDT or CCSDTQ. Returning back
to the first–order wave function our overlap integral is

L = 〈
�0

∣∣TFULL
MP2 |TOVOS

MP2

∣∣�0
〉

(28)

To ensure the orthonormality of the transformed set of orbitals,
we supplement the functional with the Lagrangian multipliers which
leads to a new functional, which is actually optimized. Within
OVOS, eq. 28, the TOVOS

MP2 operator is defined as

TOVOS
MP2 = 1/4

∑
i,j

a∗ ,b∗

ta∗b∗
ij a∗†ib∗†j +

∑
i,a∗

ta∗
i a∗†i (29)

whereas the corresponding TFULL
MP2 operator is defined in the full vir-

tual space. For closed shell molecules the last term in eq. 29 is not
needed. Indices with an asterisk correspond to virtual orbitals of
the truncated OVOS space. In our calculations, we usually refer to
the dimension of OVOS in terms of percentage compared with the
dimension of the full VOS. Target truncation of VOS is 60 or even
50% with respect to the full VOS. Obviously, any specific percentage
is just a rough estimate since orbitals must be truncated keeping in
mind the equivalent symmetry orbitals and other aspects of the VOS
structure. In calculations in which we calculate the energy difference
(as, e.g., in interaction energies), we assure a balanced reduction of
the virtual space by, e.g., requiring that for any specific truncated
OVOS the percentage of the value of the optimization functional,
eq. 28, with respect to the full VOS, is the same for all participat-
ing species (dimer, monomer, ...). Of great help is the inspection
of eigenvalues of the set of equations to which the optimization
procedure leads. For details see refs. 25, 133–135. The response
CC theory using OVOS was introduced by Boman and Koch.136

We also note that the OVOS technique is closely related to trun-
cating the virtual space transformed to the Frozen Natural Orbitals
(FNO).137, 138 There are several alternative ways of reducing the
computer demands in CC calculations. One possibility is based on
explicitly correlated CC-R12 theory139 which allows using smaller
basis sets yet leading to very accurate results. Another possibility
was proposed by Werner and Coworkers140–142 and others, based on
transformation to the localized orbitals.

CCSD(T) method is since long routinely linked with scalar rel-
ativistic DKH calculations as described in Part 4. Large basis sets
are typical for relativistic calculations. Since for heavy elements
we keep large number of inner shell electrons frozen, OVOS is
very useful in these applications. OVOS is useful also in relativistic

Table 2. Benzene and Uracil Dimer Stabilization Energies [kcal/mol] for
Various Structures Using Dunning’s aug-cc-pVXZ Basis Sets.145

Benzene dimera,b PD TT T S

Basis set/(number of used virtual orbitals)
aug-cc-pVDZ 100%/(342) 2.15 2.44 2.28 1.27
aug-cc-pVTZ 70%/(≈ 550) 2.49 2.66 2.57 1.51
aug-cc-pVQZ 60%/(≈ 836) 2.63 2.75 2.65 1.61

Uracil dimerc H-bonded Stacked

Basis set/(number of used virtual orbitals)
aug-cc-pVDZ 100%/(382) 18.43 8.54
aug-cc-pVTZ 60%/(≈ 568) 19.81 9.33

“%” represents the fraction of optimized virtual orbitals active in the
correlation energy calculation. No point group symmetry was applied in
computation.
aPD, parallel displaced, C2h, TT, T-shaped tilted, Cs, T, T-shaped, C2v, S,
“Sandwich,” D6h. Dimension of OVOS slightly varies with the structure.
bSixty correlated electrons.
cEighty-four correlated electrons.

calculations which need uncontracted basis sets. This occurs when
we calculate relativistic effects using a particular Hamiltonian for
which a specific contracted basis is missing. One example are effects
related to the change of picture, see Part 4. Examples of using OVOS
in relativistic calculations are presented in ref. 133.

Benchmark CC Calculations Within MOLCAS

Robustness of the Cholesky-based CCSD(T) code implemented
in MOLCAS is demonstrated on calculation of weak noncovalent
interactions. This is a very tough task, especially when the energy
is controlled by dispersion interactions, for which highly correlated
methods with large augmented basis sets are needed. Two examples,
the benzene143 and uracil144 dimers are presented in Table 2.

We stress the importance of using high level of correlation includ-
ing triples in CCSD(T). The stabilization energy for, e.g., the PD
structure of the benzene dimer at the MP2 level, 4.26/4.68/4.82
kcal/mol with aug-cc-pVTZ/aTZ/aQZ basis sets is strongly overes-
timated. It is underestimated with CCSD, interaction energies being
0.96/1.17/1.28 kcal/mol for the same structure and the basis sets.
Analogous conclusions can be made for the stacked structure of the
uracil dimer, with MP2 and CCSD stabilization energies 9.80/10.63
and 6.83/7.52, respectively, with aug-cc-pVDZ/aTZ basis sets.

Extended basis sets CCSD(T) calculations of the benzene and
uracil dimers were tractable with standard computer resources
thanks to employing the OVOS technique. Calculations of the uracil
dimer with OVOS truncated to 60% with the aug-cc-pVTZ basis
set were demanding (21 iterations of the CCSD part took 40 wall-
clock hours on 5 quad core 2.4 GHz computational nodes), but
truly difficult was the triples part taking 168 h with the same
setup. Considering that triples scale as N4

v using of the OVOS
method leads to speedup by almost an order of magnitude (80%),
saving more than 1000 h. Calculations of similar systems with, say,
80 correlated electrons and using up to 1500 contracted Gaussians
are presently feasible but the computer time is certainly not short.
Cholesky decomposition and high level of parallelism is inevitable
in large–scale CC calculations.
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Table 3. Spin–Adapted ROHF CCSD(T) Adiabatic Electron Affinities of
the Oxygen and Uracil Molecules [eV].

Electron affinity of the oxygen molecule, 3�−
g

Basis set/(# of v. o.) 100%a 70% 60% 50%
d-aug-ccpV5Z 0.403 0.408 0.410 0.411
d-aug-ccpV6Z 0.407 0.408 0.412 0.418
CBS limitc 0.415 0.420 0.421 0.424

Electron affinity of the uracil molecule

Basis set/(# of v. o.) 100%a 70% 60%
aug-ccpVDZb −0.189(−0.160) −0.200(−0.177)

aug-ccpVTZ −0.150 −0.155 −0.157

Dunning’s (d)–aug-cc-pVXZ basis sets. “%” represents the fraction of
optimized virtual orbitals active in the correlation energy calculation.
aOne hundred % means full virtual space.
bNumber in parentheses is with spin–adaptation omitted in CCSD(T).
cWith vibrational, core correlation, and relativistic corrections is EA 0.449
eV.146

Before using OVOS truncated to, say, 60 or 50% of the full
virtual space in routine calculations the accuracy should be care-
fully verified. We calculated134 interaction energies of several
H-bonded and stacking systems, which are models for interac-
tions in biologically relevant molecules. Good performance of
OVOS for the hydrogen bonded formamide dimer, particularly
with larger basis sets, is demonstrated in Figure 10. OVOS, even
when truncated to 50%, reproduces the basis set dependence excel-
lently with 10 times shorter computer time than is needed for
the full VOS calculation. Interaction energies with OVOS trun-
cated to 60% are with largest basis sets accurate to within 0.02
kcal/mol.134 CCSD(T) calculation of the formamide dimer using the
aug-cc-pV5Z basis set (1242 contracted Gaussians and 36 electrons
correlated) is tractable with so truncated OVOS even with a standard
workstation.

High–spin open–shell ROHF–CCSD(T) results are represented
by electron affinities (EA) of the oxygen (the 3�−

g state)135, 146 and
uracil molecules. Data in Table 3 represent the electronic contri-
bution to adiabatic electron detachment (AED) energies. Our full
virtual space AED energy146 of O2 at 0 K, 0.449 ± 0.008 eV, employ-
ing spin–adapted ROHF CCSD(T) calculations with extrapolation
to the Complete Basis Set (CBS) limit including zero–point vibra-
tional, core correlation, scalar and spin-orbit relativistic corrections
is in superb agreement with recent photoelectron spectroscopy
electron affinity measured by Ervin et al.,147 0.448 ± 0.006 eV.
Extensive CASPT2 and MR CI methods148 lead to a reasonable
EA, 0.389 eV, which deviates from the experimental value by 0.06
eV. CCSD(T) result for AED of O2 with OVOS truncated down to
50% of the full space reproduces the full space affinity with the
accuracy of 0.01 eV.135

Calculation of EA for the uracil molecule is a very difficult task
both experimentally and theoretically.149–151 Bachorz et al.149 report
the final value, +40 meV, which includes vibrational and other
corrections (+0.155 eV). Our treatment of the effect of the spin–
adaptation in CCSD(T) reduces EA of uracil by about 30 meV. This
reduces EA to just 10 meV. Basis set effects may enhance this value.

Calculations using the aug-cc-pVQZ basis set for the uracil anion
are in progress, but due to its puckered structure and thus no sym-
metry, this task is very difficult. Larger basis sets could be used with
MP2 or DFT but both methods are completely unreliable for this
problem.149 Whether the uracil molecule can accommodate an extra
electron is, therefore, not yet solved.

The ESPF Method and its Applications
in a Hybrid QM/MM Scheme

The MOLCAS package includes various theoretical methods able to
include the interactions between a quantum distribution of charges
(hereafter denoted as the quantum mechanical (QM) subsystem)
and an external electrostatic potential. For instance, point charges,
dipoles, and polarizabilities can be explicitly added, hence polar-
izing self-consistently the QM wave function. When one wants to
include isotropic solvent effects, MOLCAS allows to use two differ-
ent continuum methods (the solvent is modelled as a structureless
dielectric continuum): the Kirkwood model based on a spherical
solute cavity152 or the polarizable continuum model (PCM) featur-
ing a molecular shape-dependent cavity.153 If solid state calculations
are concerned, MOLCAS can take into account the periodicity of
the system by means of embedding ab initio model potentials.154

When the molecular system under investigation features some
anisotropic short- or long-range interactions (e.g., hydrogen bonds),
a microscopic description of the surroundings is required. Fortu-
nately, the locality principle on which all the chemistry relies, allows
to exclude from the QM model all the atoms that do not participate
directly to the studied electronic process, leading to a partition of the
whole system into a QM subsystem and its surroundings. A pop-
ular partition scheme, called the Quantum Mechanics/Molecular
Mechanics (QM/MM) hybrid method,155–157 relies on parameter-
ized simple interaction potentials (whose sum is called a force-field)
between QM particles and MM atoms. The total energy of the whole
system can be decomposed:

E = EQM + EMM + EQM/MM (30)

where EQM denotes the energy of the QM subsystem, EMM is
the energy of the MM subsystem, and EQM/MM includes all the
bonded and nonbonded interactions between both subsystems.
Because numerous MM force-fields are already available in various
chemistry fields (organic chemistry, biochemistry, heterogeneous
catalysis, etc.), the QM/MM method often takes advantage of them.
Such a QM/MM scheme has been implemented in MOLCAS and it
is briefly presented in the following.

In almost all the current QM/MM implementations, the total
electrostatic interaction between the QM and MM subsystems
involves classical interactions between the QM nuclei and the MM
multipoles (often limited to point charges) and quantum interac-
tions between QM electrons and MM multipoles, thus polarizing the
QM wave-function. The one-electron Hamiltonian matrix elements
should be modified accordingly:

hQM/MM
µν = hµν + 〈µ|VMM(r)|ν〉 (31)
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Figure 10. Scaling of the interaction energy of the formamide dimer
with number of active optimized virtual orbitals in various (aug-)-cc-
pVXZ Dunning’s basis sets. Full space of virtual orbitals represents
100%.

for a set of n electrons feeling the external electrostatic potential
VMM. When MM point charges q located at positions rq are involved,
this potential usually takes the form:

VMM(r) =
∑

q

− q

|r − rq| (32)

However, this form (eq. 32) presents several disadvantages: the
QM/MM electrostatic interaction energy is nonsymmetric by the

exchange of the QM and MM subsystems, its computational cost
depends on the size of the MM subsystem, it requires that the
external potential originates from point multipoles (and often point
charges only) and it prevents the use of the standard MM electrostatic
tricks, like the use of exclusion rules (the so-called 1–4 conditions)
or the use of some switching function leading to inconsistencies in
the electrostatic treatment of the QM/MM and MM levels.

To solve these problems, the ElectroStatic Potential Fit-
ted (ESPF) method158 has been devised and incorporated in
MOLCAS. This method is based on the following classical elec-
trostatic interaction energy:

Eelec
QM/MM =

N∑
a=1

QaVMM(ra) (33)

where Qa are expectation values of distributed multipolar atomic
operators Q̂a:

Qa = Za − 〈
Q̂a〉 = Za −

∑
µν

PµνQa
µν (34)

with Pµν a density matrix element.
In close analogy with electrostatic potential derived charges

(or other higher order multipoles), the matrix elements Qa
µν of

such operators are fitted to the electrostatic potential integrals Vk
µν

computed on a grid of points k surrounding the QM subsystem:

Qa
µν =

∑
ab

∑
k

(T†T)−1
ab T†

bkVk
µν (35)

Figure 11. Computed vs. experimental absorption and emission energies of different chromophores in
various proteins or solvents.
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Table 4. Direct vs. ESPF Deviations in Mulliken and ESPF Atomic
Charges (in e) and Molecular Dipole Moment (in D) of the QM Water
Molecule Surrounded by 3999 MM Water Molecules.

Mulliken charge ESPF charge
Dipole

O H H O H H moment

Max. dev. 0.0054 0.0043 0.0047 0.0035 0.0027 0.0033 0.0097
RMS dev. 0.0024 0.0015 0.0016 0.0012 0.0011 0.0011 0.0034

where T is the kernel matrix for electrostatic interactions, i.e.,
Tkb = |rb − rk |−1 and derivatives with respect to the nuclear coor-
dinates. Hence, in the ESPF method, the one-electron Hamiltonian
is different from (eq. 31):

hQM/MM
µν = hµν +

N∑
a=1

Qa
µνVMM(ra) (36)

Hence the ESPF operators are particularly suitable to take
into account any type of external electrostatic potential (field and
field derivatives), as long it can be computed on each QM atom.
Moreover the modification of the one-electron Hamiltonian is now
independent of the size of the MM subsystem. This method can
be incorporated easily into any QM method already present in
MOLCAS. Note also that the first derivatives with respect to the QM
atom positions are straightforward, however second derivatives have
not been considered yet. The expectation values of the ESPF oper-
ators are QM atomic multipoles, i.e., electrostatic potential-derived
charges and higher order multipoles. Note the ESPF method can be
used to compute such multipoles, even when the external potential
VMM is not present.

As a final remark, the ESPF method is an approximate method,
as it relies on the order of the multipolar atomic operators Q̂a. How-
ever, tests have shown that even at the lowest order, the agreement
between the results obtained using the one-electron Hamiltonian
(eq. 31) or the ESPF one (eq. 36) is really good. To demonstrate
the accuracy of the ESPF method, the Mulliken charges, the ESPF
charges and the dipole moment of a single water molecule (QM
level: RHF/STO-3G) embedded in a box containing other 3999
water molecules (MM level: TIP3P model) have been computed
using either the ESPF method or by the direct inclusion of the
surrounding point charges (using the XField keyword). The devi-
ations are then calculated using 112 configurations extracted from
a 112 ps molecular dynamics trajectory. The maximum and aver-
aged deviations are reported in Table 4 and perfectly demonstrate
the ESPF accuracy.

The ESPF method is the core of the QM/MM scheme imple-
mented in MOLCAS. Non-electrostatic QM/MM interactions have
been added by coupling MOLCAS with a modified version of the
MM package Tinker.159† This MOLCAS/TINKER coupling fea-
tures the MM microiterations technique that can be used to minimize

†A patch applicable to the original Tinker sources and a simple man-
ual (including some test cases) can be found at the URL: http://sites.
univ-provence.fr/lcp-ct/ferre/nf_tinker_qmmm.html.

the MM geometry each QM geometry optimization step. Moreover,
the approximate Hessian matrix can include some extra MM degrees
of freedom, corresponding to MM atoms located in a sphere defined
around the QM subsystem, giving a better convergence in a geometry
optimization of the whole QM/MM system. If the QM/MM frontier
is located on a chemical bond, the link atom scheme is available to
saturate the QM free valence. The link atom position can be con-
strained using standard geometry constraint available in MOLCAS
or using the Morokuma’s scheme160 that features a proportionality
constant between the QM–MM bond length and the QM–link atom
bond length.

The present QM/MM implementation is currently used by dif-
ferent theoretical chemistry groups, with particular interest toward
photochemical studies in biological systems, e.g., in refs. 161–164.
An overview of results obtained by Olivucci and coworkers is shown
in Figure 11.

Photochemistry and Constrained Optimizations

One of the most significant strengths of MOLCAS is the efficient
implementation of multi-configurational methods such as CASSCF,
CASPT2, MS-CASPT2, and RASPT2. These procedures are gen-
erally applicable to all types of electronic structure problems, with
no restriction except for the size of the systems or the defined
multi-reference space. Because of the intrinsic multiconfigurational
character of the problem, the combination of these procedures with
the use of high-quality ANO basis sets and powerful algorithms
for the determination of stationary points on the potential energy
hypersurface has made MOLCAS the preferred package in the field
of excited state quantum chemistry.165 In the 90s, the accuracy of
CASSCF and CASPT2 to deal with the excited states of small
to medium size organic, inorganic, and organometallic molecules
was established, and hundreds of spectroscopical problems were
successfully solved.54, 94, 166–172 More recently, the development of
new methods such as MS (Multistate) CASPT213 or RASPT296 and
the implementation of specifically constrained optimization proce-
dures such as the calculation of Minimum Energy Paths (MEPs)
or Minimum Energy Crossing Points (MECPs)173 has expanded
the applicability of the package to the field of non-adiabatic pho-
tophysics and photochemistry. In particular, CASSCF is still the
only method generally applicable to deal with the degeneracy prob-
lem in the excited state (i.e., conical intersections, singlet-triplet
crossings, high density of states, etc.), and MOLCAS is one of the
few packages able to tackle those challenging problems efficiently.
Obviously these capabilities extend its successful use to transition
metal174 or heavy-element66 chemistry. A combined search of these
terms (methods and topics) in recent literature yields no less than
600 entries.

Excited states are the actors of photochemical reactions induced
by the absorption of light of appropriate wavelength. This process
culminates in the formation of an electronically excited state of
the molecule, which decays to lower energy states by means of
nonradiative [e.g., internal conversions (IC), inter-system crossings
(ISC) or energy transfer to other species] or radiative (e.g., flu-
orescence or phosphorescence) transitions. The energy is finally
dissipated to the surroundings or used to yield new photoproducts.
Figure 12 displays a scheme of the most important photophysi-
cal and photochemical molecular phenomena.175 In an initial step,
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Figure 12. Scheme of the main photophysical and photochemical
molecular events.

the description of such processes requires the accurate and bal-
anced determination of the complex topology of potential energy
hypersurfaces (PEHs) determining favorable reaction paths and
state couplings. Further studies should include the dynamic (time-
dependent and statistical) effects involved in the evolution of the
system on the PEHs.

The CASPT2 method has shown to be feasible and adequate to
deal with all types of electronic structure cases and PEHs, provide
accurate energies and lead to conclusive results. Particularly diffi-
cult cases such as the simultaneous treatment of compact valence
and diffuse Rydberg states166, 176 or close degeneracy situations177

can also be properly treated with the MS-CASPT2 approach,13

which provides orthogonal solutions for the states (unlike single-
state CASPT2). As important as the energies are the matrix ele-
ments which inform about the probability of the energy transfer
between the states, for absorption, emission, and radiationless decay.
MOLCAS includes the CASSI/RASSI (CAS/RAS State Interac-
tion) procedure,23, 24 a solid approach that yields all types of
interaction matrix elements of the Hamiltonian and other operators
over a wave function basis, including orthogonal or nonorthogo-
nal states. It has been extensively used to compute transition dipole
moments (and the corresponding oscillator strengths or radiative
rates) and spin-orbit couplings.65, 178–183

Understanding the spectroscopy and photochemistry of a molec-
ular system means (at least from a static, topological viewpoint) to
know large areas of the PEHs, including states minima, reaction
paths, transition states, and state crossing regions. MOLCAS had
previously efficient optimization algorithms to determine stationary
points using simple or multiple geometrical constraints, and equally
applicable to the ground and the excited states. Together with pro-
cedures based on analytical gradients at the CASSCF and RASSCF
levels of calculation, for small systems it is possible to perform opti-
mizations at higher levels such as CASPT2 or MS-CASPT2 using
numerical gradients, even within a parallel computational frame-
work. As long the procedures were used successfully, especially in
electronic and vibrational spectroscopy, for instance to predict the
existence of dark states in polyenes184–186 or determine accurate
vibrational band shapes.168–171

More recently new algorithms were implemented that, by includ-
ing specific geometry or energy constraints, allow the determination
of more particular structures. As an important tool, MOLCAS

incorporates the calculation of Minimum Energy Paths (MEPs) as
the lowest-energy reaction path followed by the system along a spe-
cific state. A MEP can be considered as the initial and most favorable
path to describe the evolution of the energy along a state and the only
one able to guarantee the presence or absence of energy barriers. In
MOLCAS, they are built as steepest descent paths in a procedure173

which is based on a modification of the Projected Constrained Opti-
mization (PCO) algorithm of Anglada and Bofill187 and follows the
Müller-Brown approach.188 Each step requires the minimization of
the PEH on a hyperspherical cross section of the PEH centered on
the initial geometry and characterized by a predefined radius. The
optimized structure is taken as the center of a new hypersphere of
the same radius, and the procedure is iterated until the bottom of
the energy surface is reached. Mass-weighted coordinates are used,
therefore the MEP coordinate corresponds to the so-called Intrinsic
Reaction Coordinates (IRC). Figure 13 (top) displays an example of
calculation in the 9H-guanine molecule.189 Each point of the MEP
is computed at the CASSCF level as the lowest-energy optimized
structure in the target state (the spectroscopic 1Laππ∗ of guanine)
located at a distance from the original (Franck-Condon) geome-
try equal to the radius of an hypersphere centered in such initial
structure. At each of the CASSCF MEP structures, a single-point
CASPT2 calculation is performed. The outcome leads to predict
the key photochemical event in the guanine molecule. Upon UV
irradiation, in which the main spectroscopic state is populated in
a major extent, the system evolves along the MEP in a barrierless
way towards a region of crossing with the ground state. The major
part of the absorbed energy is then efficiently dissipated in an ultra-
fast manner to the environment and an internal conversion takes
place in which the population is finally switched to the ground state
via a predicted CI (gs/1La)CI. This type of topology suggests that,
as all other DNA nucleobase monomers,190–193 guanine is highly
photostable after UV absorption.

Another important tool allows to perform a structural optimiza-
tion constrained to maintain a given energy difference (degeneracy,
in general) between two selected states. In this manner, a general
Minimum Energy Crossing Point (MECP) search can be performed,
yielding the lowest energy point fulfilling the energy difference
restriction. The search is performed using a restricted Lagrange
multipliers technique.173 If the MECP is defined between states of
different multiplicities, the exact topological feature has been found,
that is, the lowest energy point belonging to the hyperplane (seam)
of structures responsible for a nonradiative ISC process. Analyzing
the probability of ISC requires first to determine the accessibility
of the ISC crossing point. A good strategy is to compute a MEP
in the initially populated state (typically a singlet in most systems),
and from the MEP points to find how accessible can the ISC cross-
ing region be. It might occur that the MEP is barrierless toward
such region178, 179 or that some barrier has to be surmounted.180

MOLCAS allows tracing the corresponding path by combining the
MEP and MECP algorithms, that is optimizing MECP structures
at controlled distances and directions from a given geometry. This
procedure may lead to MEPs going upward, for instance defined in
a space perpendicular to a specific vector (e.g., the main path direc-
tion).173 Other possibility is to compute a transition state and define
a photoadiabatic reaction (see Fig. 12).191–193 As an illustration
Figure 14 displays a number of seams of minimum (SOM) energy
points computed to analyze the photochemistry of acrolein,173
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Figure 13. Computed CASPT2//CASSCF MEP (top) for the decay of the lowest ππ∗ state of 9H-guanine
and CASSCF seam (bottom) of degeneracy points from the Minimal Energy Crossing Point (MECI) toward
the crossing at the end of the MEP (CI).

finding the Near Crossing Point (NCP) from a given structure by
mapping the seam space. Populating the final state (triplet in gen-
eral) requires the combined effects of a small energy-gap (state
crossing region) and large spin-orbit coupling terms, whose mag-
nitude (controlling the ISC transfer probability) can be accounted
for with the RASSI program, which can compute matrix elements
over spin-orbit states.24, 178–183 Recently De Vico and Lindh194 have
demonstrated an excellent alternative to the SOM approach. They
applied a combination of several constraints, i.e., degeneracy plus
hypersphere search plus the orthogonality condition, to search for
various seams perpendicular to a MEP. This did not only establish a
one-to-one map between a MEP and one or several seams, but also
demonstrated which molecular vibrations populate the individual
seams.

It is known that most of the photochemistry takes place, however,
via IC between states of the same multiplicity, and the main topo-
logical protagonists of the energy transfer process are the regions of
conical intersections (CI). Topologically, the structures belonging to

an hyperline or seam of CIs fulfill the degeneracy condition along all
coordinates except two, the states gradient difference and the Non-
adiabatic Coupling Elements (NACMEs) between the interacting
states, terms which are discarded in the usual Born-Oppenheimer
framework. In MOLCAS-7 the calculation of NACMEs is not ready
yet and therefore the state crossing algorithm yields strictly MECP,
not Minimum Energy Conical Intersections (MECI). In practice,
however, the structural difference between both features is not large,
as observed in different cases.189 Figure 13 (bottom) illustrates the
use of MOLCAS to solve a problem involving CIs. Once determined
in guanine the MEP controlling the evolution of the spectroscopic
singlet excited state from the Franck-Condon region and leading in a
barrierless way toward a degeneracy region with the ground state,189

it is possible to determine the MECI (actually MECP) supposedly
responsible of the IC process, in this case displaying (bottom of the
drawing) an almost 90◦ out-of-plane distortion of the NH2 group
in guanine.189 The assumption that the MECI is the most relevant
structure that must be reached to trigger the IC process is common in
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Figure 14. Computed paths and seams in acrolein. (By permission of American Chemical Society).

the literature, but incorrect. The most relevant CI (or seam of CIs) is
not the lowest-energy CI (or MECI) but the most accessible one. In
the case of guanine it was proved that the seam of CIs extends from
the MECI region toward the end of the MEP, in which the degener-
acy seam is easily accessible, whereas an energy barrier prevents the
MECI to be reached. Tracing the seam of CIs is possible by combin-
ing two restrictions in a constrained optimization of the molecule
in its excited state: degeneracy between the first and second sin-
glet states and distance from the reference geometry (MECI here)
at successive radius of the hypersphere. Each individual optimiza-
tion generates one point of the seam (see Fig. 13) until the region
of the end of the MEP was reached and the really significant CI
described.

Non-adiabatic photochemistry is a new and emergent field
for theoretical chemistry, where many recent methods and algo-
rithms have to be incorporated to the codes and where a number
of limitations are still present in the calculations. Due to the
size of the problems most of the photochemical studies use the
CASPT2//CASSCF computational strategy, that is, geometries and
energies determined at the CASSCF and CASPT2 levels, respec-
tively. In most cases, the results are accurate enough, although
one has to be aware of the problems with differential correlation,
that is, the correlation energy may affect differently to the states,
and, for instance, two degenerate states in a CASSCF MECP may
dramatically split at the CASPT2 or MS-CASPT2 levels.175, 177

The problems can be generally solved in small systems perform-
ing CASPT2 or MS-CASPT2 geometry determinations195, 196 using
numerical gradients. It is expected that MOLCAS incorporates in

the near future important tools such as analytical CASPT2 gradi-
ents, NACME elements to characterize CIs, and even procedures to
get trajectories for semiclassical reaction dynamics.189, 197 Together
with the available procedures to mimic environmental effects (con-
tinuum models, QM/MM, embedding potentials),26, 163, 198–200 they
will extend the applicability of the package in the future in the field
of photochemistry.

Summary

The most recent version of MOLCAS, version 7, has been updated,
as compared with earlier versions, with respect to methods and
implementations which should facilitate calculations of much
larger molecular systems and/or correlating more electrons. These
improvements encompass methods to handle larger basis sets via
a general tool, based on the Cholesky decomposition, to gener-
ate auxiliary basis functions either explicitly or implicitly. This
approach has been generalized to be applicable to the HF, pure
and hybrid DFT, MP2, CCSD, CCSD(T), CASSCF, RASSCF,
CASPT2, MS-CASPT2, and RASPT2 wave function models. The
article presents the theory and techniques behind these improve-
ments and numerous examples are provided to demonstrate the
capacity of these new developments. Especially, the improvements
with respect coupled-cluster theory and the RASPT2 methods are
presented in some details. With these new developments the MOL-
CAS package supports highly correlated calculations (CASPT2
and CC) in excess of 1000 basis functions. Furthermore, the
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MOLCAS package has been improved with respect to the applicabil-
ity of the one-component wave functions models to address chemical
problems involving elements of the whole periodic table. In particu-
lar, the paper demonstrates the benefits of the so-called ANO-RCC
basis set library covering all elements and presents the theory
and implementation of the picture-change-free property integrals
to be used in association with relativistic calculations originating
from the DKH transformation. The ESPF QM/MM interface, the
MOLCAS/Tinker implementation, which in principle can han-
dle any kind of MM forcefield, is presented and discussed. The
manuscript is concluded with a section, which in some details,
describes the usefulness of the MOLCAS package in association
with the study of photochemistry. More specifically, the implemen-
tation of constrained geometry optimization to facilitate the search
for MEPs, MECPs, ISCs, and CIs are discussed as well as the anal-
ysis of the relationship between reaction paths and seams of various
nature. This section is supported by illustrative examples.
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