
Volume 112 | Issues 17–18 | 2012
Included in this print edition:
Issue 17 (September 5, 2012)

Issue 18 (September 15, 2012)

Research in Systems Neuroscience
www.q-chem.org

Special Issue:
In honor of Professor Ilya Kaplan 



Special Issue: In honor of Professor Ilya Kaplan

Jahn-Teller Effects

Large scale Jahn-Teller systems, such as
the biologically important iron-sulfur
proteins, polynuclear metal-oxide clusters,
and metal ions in crystals, present a
complicated dynamic problem that, in
general, cannot be solved analytically. In
fact, the vibronic properties of these
systems have remained unknown due to
the lack of efficient computational tools.
On page 2957, Boris Tsukerblat, Andrew
Palii, Juan M. Clemente-Juan, Alejandro
Gaita-Ariño, and Eugenio Coronado
present a symmetry-adapted approach
aimed at the accurate solution of this
problem. The image on the cover and left
illustrates an ideal system for the
application of this method, the reduced
mixed-valence dodecanuclear Keggin
anion, in which the electronic pair is
delocalized over 12 sites.

Potential Energy Surface
Generation

The generation procedure of the potential
energy surface (PES) can, in some systems,
influence the relative stability of
conformers. In the case of the triatomic
van der Waals molecule HeI2, presented
on page 2971 by Gerardo Delgado-Barrio
and coworkers, it is concluded that
different procedures provide PESs of
similar quality, determined by the accuracy
of the available ab initio data. Confirming
the results of previous experimental
studies, the surface depicted on the cover
shows two potential minima
corresponding at the linear and T-shaped
configurations with very similar well-
depths.

Look for these important papers
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Why sp2-Like Nanosilicons Should
Not Form: Insight from Quantum
Chemistry

E. F. Sheka

The odd-electron molecular theory,
which takes into account the
electron correlation, is applied for a
comparative consideration of sp2

nanocarbons and their siliceous
analogues. DOI: 10.1002/qua.24081

An Analysis of Unsupported Triple
and Quadruple Metal–Metal Bonds
Between Two Homonuclear Group
6 Transition Elements Based on the
Combined Natural Orbitals for
Chemical Valence and Extended
Transition State Method

Sylvester Ndambuki and Tom Ziegler

The energy and density decomposition
scheme is applied to the study of
selected multiple metal–metal bonds,
by providing a qualitative and
quantitative picture of bonding
interactions that govern chemical bond
formation. DOI: 10.1002/qua.24068

Assessing the Performance of
Computational Methods for the
Prediction of the Ground State
Structure of a Cyclic Decapeptide

Ursula Rothlisberger et al.

The performance of a series of
classical force fields is discussed to
efficiently explore conformational
space and generate candidate
structures for subsequent
refinement at the DFT level.
DOI: 10.1002/qua.24085
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A Symmetry Adapted Approach to the Dynamic
Jahn-Teller Problem: Application to Mixed-Valence
Polyoxometalate Clusters with Keggin Structurey

Boris Tsukerblat,*[a] Andrew Palii,[b] Juan M. Clemente-Juan,[c] Alejandro Gaita-Ari~no,[c]

and Eugenio Coronado[c]

In this article, we present a symmetry-adapted approach

aimed to the accurate solution of the dynamic vibronic

problem in large scale Jahn-Teller (JT) systems. The algorithm

for the solution of the eigen-problem takes full advantage of

the point symmetry arguments. The system under

consideration is supposed to consist of a set of electronic

levels mixed by the active JT and pseudo JT vibrational

modes. Applying the successive coupling of the bosonic

creation operators, we introduce the irreducible tensors that

are called multivibronic operators. Action of the irreducible

multivibronic operators on the vacuum state creates the

vibrational symmetry adapted basis that is subjected to the

Gram-Schmidt orthogonalization at each step of evaluation.

Finally, the generated vibrational basis is coupled to the

electronic one to get the symmetry adapted electron-

vibrational (vibronic) basis within which the full matrix of the

JT Hamiltonian is blocked according to the irreducible

representations (irreps) of the point group. The proposed

approach is a part of our study of the nanosized mixed

valence (MV) clusters with large number of delocalized

electrons that are at the border line between quantum and

classical objects. Here, we illustrate in detail the developed

technique by the application to the 2e-reduced MV

dodecanuclear Keggin anion in which the electronic pair is

delocalized over 12 sites (overall symmetry Td) giving rise to

the (1T2þ1Eþ1A1)�(eþt2) (3T1þ3T2)�(eþt2) combined JT/

pseudo JT problems for the spin-singlet and spin-triplet states.

VC 2012 Wiley Periodicals, Inc.
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Introduction

Jahn-Teller (JT) and pseudo JT effects lead to a complicated

dynamic problem that, in general, cannot be solved in an ana-

lytical way.[1–3] The difficulties are progressively aggravated for

the multimode systems or/and when the energy pattern con-

tains several low-lying levels mixed by the active JT and

pseudo JT vibrations. This especially refers to the large scale

mixed valence (MV) systems, like biologically important sys-

tems such as iron-sulfur proteins,[4–6] polynuclear metal-oxide

clusters in which several electrons are delocalized over metal

network (e.g., reduced polyoxometalates [POMs], with Keggin

and Wells-Dawson structures),[7,8] impurity metal ions in crys-

tals,[9–11] etc. In these cases, the dimension of the truncated

vibronic matrices to be diagonalized becomes very high due

to sizeable electronic basis and multiple degeneracy of the

excited vibrational levels. Convergence of the results is always

questionable, so that the truncation of the vibronic matrices

can result in a dramatic lack of precision not only when the

vibronic coupling is strong but also providing moderate or

even relatively weak coupling.

For this reason, many efforts have been applied toward

elaboration of the approximate approaches among which the

adiabatic approximation plays a key role. In some cases, the

adiabatic approximation provides a general insight on the im-

portant features of the JT systems, for example, for a qualita-

tive discussion of the broad electron-vibrational light absorp-

tion bands, asymmetric electronic distribution of the electronic

density in complex MV systems,[8c] structural peculiarities of

polyatomic molecules,[2,3] spin-crossover complexes,[12] and

crystals subjected to the structural phase transitions.[13] At the

same time, the applicability of the semiclassical adiabatic

approximation is greatly restricted due to the dynamic charac-

ter of the vibronic coupling, resulting in a discrete energy
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pattern of the hybrid electron-vibrational levels. Even in a

favorable case of strong vibronic coupling, the adiabatic

approximation fails in the description of the physical character-

istics of the JT systems related to the quantum structure of

the levels, like spectroscopic phenomena, and in particular,

wide optical bands for which transitions in the nonadiabatic

anticrossing area of the potential surfaces play an important

role in the adequate description of the band-shapes.[11]

Many attempts have been undertaken to get an accurate so-

lution of the dynamic problem (for a review see Refs.

[1–3,11,14]). A powerful approach is based on the symmetry

combined with the Lanczos algorithm[15,9b] (see also references

therein). Alternatively, a significant progress in the solution of

the dynamic problem has been achieved by the exploration of

the Lie symmetries of the JT Hamiltonians that not only bring a

beauty but really allows to essentially simplify the solution of

the dynamic problem.[16–19] Nevertheless, the vibronic Hamilto-

nian only exhibits high (unitary) symmetry in the model re-

stricted by the linear vibronic coupling, in which a special inter-

relation between the coupling constants and vibrational

frequencies exists. This significantly reduces the area of practical

applicability of the extremely elegant approaches based on the

unitary symmetries. If these special requirements are not ful-

filled or/and the quadratic (or/and high order) vibronic terms

are significant, the unitary symmetries prove to be reduced to

the point symmetries. That is why the task of the full explora-

tion of the advantages provided by the point symmetry of the

JT and pseudo JT systems remains a current challenge even

when the computational abilities are strongly increased.

The main goal of this article is to describe a symmetry

adapted approach aimed to an accurate solution of the

dynamic problem for the JT and pseudo JT systems. This goal

is part of our study of the nanosized MV clusters that are at

the border line between quantum and classical objects. An

accurate solution for the states of the delocalized electronic

pair in MV POMs based on symmetry arguments have been

obtained in Ref. [8]. In our recent articles,[20] we proposed a

general approach for the evaluation of the energy pattern of

high nuclearity MV systems with an arbitrary number of itiner-

ant electrons. The vibronic interaction inherent to the problem

of mixed valency can not be neglected in particular for the

description of the intervalence optical absorption. That is why

here we attempt to extend our efforts in the study of mixed

valency by the elaboration of an effective approach to the

dynamic vibronic problem.

We introduce the mathematical procedure through the con-

sideration of the MV POM with Keggin structure reduced by

2e. This dodecanuclear MV system belongs to a large class of

POMs, the so-called ‘‘heteroblues,’’ which are attracting consid-

erable interest in solid state chemistry, biomedical applications,

catalysis, and materials science in view of its unique electronic

properties.[21] In terms of mixed-valency, the Keggin anion can

be viewed as a high-nuclearity cluster belonging to Class II in

Robin and Day classification. Owing to its complexity, this sys-

tem provides a complicated high symmetric JT system for

which the dynamic problem seems to be actual for the

adequate description of the nontrivial magnetic and optical

(intervalence bands) properties of these compounds. In this ar-

ticle, we will focus on the elaboration of the theoretical

approach, while the associated computer program aimed to

solve the multimode multilevel vibronic problems together

with the detailed discussion of the experimental data on the

Keggin anion will be published elsewhere (Clemente-Juan

et al., to be submitted).

General Statements

The Hamiltonian of a JT (or, in general, pseudo JT) system can

be represented as:

H ¼ He þ
X
i

�hxi q2i �
@2

@q2i

� �
þ
X
i

tiOiqi (1)

Here, qi are the dimensionless vibrational coordinates, xi are

the vibrational frequencies so that the second term in Eq. (1) is

the harmonic oscillator Hamiltonian. The symbol i � v�C�c
involves active vibrational irreps �C, �c numerates the basis func-

tions of the irrep �C and symbol v is introduced to distinguish

the repeated irreps �C. The electronic subsystem described by

the Hamiltonian He is supposed to consist of a set of the closely

spaced electronic levels C1,C2…Ct labeled by the irreps of the

actual point group (the basis functions will be marked by the

symbols c1,c2, … ct). Conventionally, this electronic Hamiltonian

(and consequently the point group) is defined with respect to

the high symmetric nuclear configuration (all qi ¼ 0). The elec-

tronic levels C1, C2…Ct are mixed by the active JT and pseudo

JT vibrational modes �C1; �C2…�Cf . The third term in Eq. (1) repre-

sents the linear (with respect to qi) term of the vibronic interac-

tion in which Oi are the so-called vibronic matrices defined in

the electronic basis restricted to the levels C1, C2… Cn and ui
are the dimensionless (in �hx units) vibronic coupling parame-

ters. In general, the approach described hereunder in not lim-

ited to the case of the linear vibronic coupling.

The full JT Hamiltonian, Eq. (1), can be diagonalized in the

basis composed as the direct product of the electronic func-

tions |Cfcfi (f ¼ 1,2 … t) and the harmonic oscillators states

|nii (ni ¼ 0,1,2…):

Cf cfj i n1j i n2j i… nkj i � Cf cfj i n1; n2…nkj i (2)

Due to multiple degeneracy of the excited vibrational levels

in multimode JT systems the size of the matrices of the full

Hamiltonian proves to be rather large even if the basis is re-

stricted to a relatively small number of vibrational levels. On

the other hand, the truncation of the basis leads to a signifi-

cant lack of precision providing moderate or even relatively

weak JT coupling.

Let us introduce the creation and annihilation bosonic oper-

ators bþ
v�C�c

and bv�C�c for the vibrational modes v�C�c. The creation

operator has the following property:

b̂þ nj i ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
nþ 1j i (3)

Therefore by applying the creation operators to the vacuum

state in a successive way
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b̂
þ� �

n 0j i ¼
ffiffiffiffi
n!

p
nj i (4)

one can build the exited states |ni. For the sake of brevity we

will use the notation b̂þ ¼ ĉ.

Electronic States and Vibrations of the
2e-Reduced Keggin Polyanion

POMs are molecular metal-oxides containing networks of octa-

hedral MO6 units which share edges or corners.[7,8] The Keggin

structure consists of the four edge-sharing triads of MO6 units

arranged around the heteroatom X (¼ B, Si, P, Co, Cu,…) by

sharing corners in such a way that the system consisting of

the twelve sites possesses overall tetrahedral symmetry Td (Fig.

1a). Figure 1b shows the idealized scheme of the metal sites

of the Keggin system that consists of the four metal triangles

(a1a2a3, b1b2b3, etc.) perpendicular to the C3 axes of the tetra-

hedron. The Keggin anion can be reversibly reduced by adding

one or more electrons, which are delocalized over the metal

network. The resulting MV systems usually belongs to Class II

in the Robin and Day classification[22] (see also review article

Ref. [23]) exhibiting thus an intermediate vibronic coupling. In

this respect, the Keggin anion with the delocalized electronic

pair is of a special interest due to its unusual magnetic proper-

ties. In fact, as it was suggested in Refs. [8,24] the delocaliza-

tion results in the effective stabilization of the antiferromag-

netic spin state of the electronic pair in the Keggin anion. This

physical conclusion is rather general and valid also for other

2e-reduced POMs, for example, for the Wells-Dawson

systems.[8]

Due to the complexity of the vibronic problem in its general

form, it is conventional to use the model formulated by Pie-

pho, Krausz, and Schatz[22] (referred to as PKS model) to treat

this problem. This model deals with the independent ‘‘breath-

ing’’ displacements (that are assumed to be the normal coordi-

nates) of the ions around the sites of the electron localization.

Being very efficient and at the same time relatively simple, this

model is able to describe the

most important features of the

phenomena related to mixed

valency.

The interpretation of the

spin pairing in the Keggin

anion proposed in Ref. [8a] is

based on the model including

delocalization (single and dou-

ble electron transfer processes)

of the two electrons over 12

sites (Fig. 1b) as well as the

Coulomb repulsion. The energy

levels can be divided into five

groups corresponding to the

different distances between

delocalized electrons in the 66

dispositions. The Coulomb

repulsion tends to keep the

electrons as far as possible in

the ground configuration that is shown to consists of the

three spin-singlets 1A1,
1E, 1T2 and two spin triplets 3T1 and3T2

and the energy levels are given in Ref. [8a]. The conditions

were elucidated under which spin pairing can occur as a result

of competition between the single- and double electron trans-

fer processes and depends also on the interelectronic interac-

tion. It was emphasized that these conditions are strongly

affected by the vibronic interactions that tends to localize the

electrons and thus effectively reduce the transfer parameters.

The degrees of localization prove to be different for the spin-

triplet and spin-singlet states that essentially influence the

magnetic properties of the reduced Keggin anion. That is why

in our article,[8c] we presented a study of the electronic local-

ization based on the vibronic PKS model. It was shown that

the doubly degenerate (e) and triply degenerate vibrations (t2)

are active and hence, the potential surfaces are determined by

the JT/pseudo JT interactions of the types of (1T2þ1Eþ1A1)

�(eþt2) for the spin singlets and (3T1þ3T2)�(eþt2) for the

spin triplets. The adiabatic approximation used in Ref. [8c]

provides an important qualitative information about the

symmetry of the localized configurations of the electronic

pair (broken symmetry states) but strongly restricts the ac-

curacy of calculations of the magnetic characteristics and

especially, the profiles of the intervalence optical bands for

which the quantum structure of the excited vibronic levels

is crucially important. It is important also to note that

within the PKS model both types of vibrations essentially

contribute to the vibronic coupling (the parameters are

interrelated) and therefore, the problem can not be simpli-

fied by neglecting, for example, one type (E or T2) of the

active vibrations.

Within the PKS model, the frequencies of T2 and E vibrations

are equal as they both simply represent the frequencies of the

local ‘‘breathing’’ mode and therefore, the electronic system is

effectively coupled to a five-dimensional oscillator. Therefore,

the dimension of the vibrational space G(N) including five

modes (E and T2) can be estimated as:

Figure 1. Two-electron reduced polyoxoanion with Keggin structure: network of the octahedral units (a) and

scheme of the metal sites (b) [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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GðNÞ ¼
XN
n¼0

1

24
nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ nþ 4ð Þ

¼ 1

120
ðNþ 1ÞðNþ 2ÞðNþ 3ÞðNþ 4ÞðNþ 5Þ; (5)

where, n ¼ n1 þ n2 þ n3 þ n4 þ n5 is the total number of ex-

citation of the five-dimensional harmonic oscillator (label of

the energy level), the expression under summation is the total

degeneracy of the level with a given n and N is the number of

the levels included in the basis. The total degeneracy of the

electron-vibrational space for spin-singlets and spin-triplets is

6G(N), which leads to a very high dimension of the vibronic

matrices. For example, in the cases under consideration the

size 6G(N) of the truncated matrix (without symmetry based

simplifications) for N ¼ 40 as large as 7330554. This choice of

the basis can probably ensure a reasonable (but not high) ac-

curacy in the description of several low lying vibronic levels

required for an adequate evaluation of the profiles of the

intervalence optical bands in the Keggin anion. At the same

time, one can see that even a relatively small number of the

vibronic levels involved in the evaluation lead to the huge size

of the matrices in the multimode systems and demonstrate a

necessity of the efficient use of the symmetry. To design the

symmetry adapted basis we will first consider E and T2 vibra-

tions separately and then the results will be combined taking

into account the electronic states.

Group-Theoretical Classification for a
Two-Dimensional Oscillator

The vibrational functions in the full electron-vibrational basis

in Eq. (2) do not possess definite symmetry properties with

respect to the operations of the point group. To adapt them

to the definite irreps let us first consider the case of the two-

dimensional (E) harmonic oscillator. The basis of the irrep E in

Td will be chosen in a standard way: u ! 3z2 � r2,

t / ffiffiffi
3

p
x2 � y2ð Þ.[25] The functions |nunui can be built by apply-

ing the creation operators as follows:

nu ntj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
nu!nt!

p ĉ nu
u ĉ nt

t 0 0j i: (6)

Each level with a certain n ¼ nu þ nu

En ¼ �hx nu þ nt þ 1ð Þ (7)

is g ¼ (n þ 1)-fold degenerate. For example, the first excited

level n ¼ 1 is double degenerate (nu ¼ 1, nu ¼ 0 and nu ¼ 0,

nu ¼ 1), etc. The dimension of the vibrational space including

levels n ¼ 0,1…Ne is peN ¼ PN
n¼0 nþ 1ð Þ ¼ 1

2 Ne þ 1ð Þ Ne þ 2ð Þ
where, Ne is the number of the vibrational levels included in

the basis for the solution of the dynamic vibronic problem.

Before evaluation of the symmetry adapted basis, it is

worthwhile to classify the resulting irreps. Such kind of the

group-theoretical classifications of the electronic and spin

states of the molecules[26] and spin systems[27] prove to be

useful for their qualitative discussion and evaluations of the

energy levels. In the case under consideration, this can be

done using the correlation between the angular momentum

representation for a two-dimensional oscillator[28] and point

group irreps. The results for several vibrational levels are col-

lected in Table 1.

Symmetry Adapted Basis for a
Two-Dimensional Harmonic Oscillator

Creation operators ĉu and ĉu can be related to the irrep E

and therefore, the basis functions for each n belonging to

the definite irreps (A1,A2,E for E vibrations in Td) can be

obtained by the application of the symmetry adapted poly-

nomials constructed from operators ĉnuu ĉntt to the ground

(vacuum) state |00i (full symmetric, A1). Action of the symme-

try adapted operator polynomials (let say, of Cc type) on the

vacuum state |00i creates thus the vibrational function |n,

Cci with a given n.

Let us introduce the symmetry adapted operators T
ðnÞ
Cc con-

structed from operators ĉnuu ĉntt with definite n ¼ nu þ nu,

where, C is one the irreps (C ¼ A1, A2, E) corresponding to

the set of the vibrational functions belonging the energy

level n. The operators T
ðnÞ
Cc realize the transformation from the

basis |nunuiwith a certain n to the symmetry adapted basis

|n,C ci:

n;Ccj i ¼
X
nu ;nt

nuþnt¼nð Þ

c nunt; m Ccð Þ nu; ntj i; (8)

where, m is an additional quantum number that is introduced

to distinguish the states of the system in the case when the

irrep C occurs several times in the set n. By definition, the op-

erator T
ðnÞ
Cc acts on the vacuum state |00i : |nu ¼ 0,nu ¼ 0i

and creates a basis function of the type of Cc belonging to a

certain excited vibrational state n:

T
nð Þ
Cc 00j i ¼ n;Ccj i: (9)

For this reason, we will refer T
ðnÞ
Cc to as multivibronic symme-

try adapted creation operators that can be considered as the

irreducible tensor operators of the type of Cc in the actual

point group (Td in the case under consideration). This allows

one to build the multivibronic operators with the use of the

well developed technique for manipulation with the irreduci-

ble tensor operators in the point groups[28] (see for example

Refs. [25,29–31]). This technique allows to construct the sym-

metry adopted basis wCc : |Cci belonging to the irreps C of

a point group from the direct products /C1c1wC2c2 :

Table 1. Group-theoretical classification of the vibrational states for E

vibrations in Td symmetry.

n g (n) Vib. irreps

1 2 E

2 3 A1 þ E

3 4 A1 þ A2þ E

4 5 A1 þ 2E
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hC1c1C2c2| of the basis functions uC1c1 and uC2c2 which are the

bases of the irreps C1 and C2, correspondingly:

Ccj i ¼
X
c1c2

C1c1C2c2j i C1c1C2c2h jCci; C 2 C1 � C2 (10)

The coupling coefficients (Clebsch-Gordan coefficients) for

all point groups are given by Koster et al.[29] We will use the

Malliken notations for the irreps of Td and the notations for

the basis functions introduced in the book by Sugano, Tanabe,

and Kamimura.[25]

Let us first illustrate the approach by the evaluation of the

multivibronic operators for several low lying vibrational levels

(in the case of E vibrations) and corresponding symmetry

adapted basis functions. Operators ĉu and ĉu and belong to

the irrep E, the ground state |00i is full symmetric (A1) that

means that in the case under consideration T
ð1Þ
Cc ¼ bþCc. Then

for n ¼ 1 one obtains:

T
1ð Þ
Cc 00j i ¼ 1;Ccj i: (11)

This leads to the following obvious result:

ĉu nu ¼ 0; nt ¼ 0j i ¼ nu ¼ 1; nt ¼ 0j i � 1; Euj i
ĉt nu ¼ 0; nt ¼ 0j i ¼ nu ¼ 0; nt ¼ 1j i � 1; Etj i (12)

In general, according to the coupling scheme the operator

T
ð2Þ
Cc can be represented as a tensor product:

T̂
2ð Þ

Cc ¼ ĉC1
� ĉC2

f g Cc; C 2 C1 � C2; (13)

The reducible representation C1 � C2 can be decomposed

into irreprs (in our case E � E ¼ A1 þ A2 þ E) by the use of

the coupling scheme, Eq. (10) that gives the following result:

T̂
2ð Þ

A1
¼ 1ffiffiffi

2
p ĉ2u þ ĉ2t

� �
;

T̂
2ð Þ
Eu ¼ � 1ffiffi

2
p ĉ2u � ĉ2t

� �
;

T̂
2ð Þ

Et ¼ ffiffiffi
2

p
ĉu ĉt ;

9=
; E

T̂
2ð Þ

A2
¼ 0 :

(14)

One can see that the operator T
ð2Þ
A2 corresponding to the

antisymmetric part {E � E} of the direct product E � E van-

ishes in the case of n ¼ 1 so that the full dimension of the

obtained basis is g(n) ¼ n þ 1 ¼ 3. Applying operators T
ð2Þ
Cc to

the vacuum state T
ð2Þ
Cc |00i ¼ |2,Cci one obtains the three-

dimensional vibrational basis for n ¼ 2 with C ¼ A1,E (Table

1). The final results for the normalized states (that are also or-

thogonal) are the following:

2;A1j i ¼ 1ffiffiffi
2

p 20j i þ 02j ið Þ;

2; Euj i ¼ � 1ffiffi
2

p 20j i � 02j ið Þ
2; Etj i ¼ 11j i

�
E: (15)

Then one has to build the operators T
ð3Þ
Cc applying the subse-

quent step of the coupling procedure:

T̂
3ð Þ

Cc ¼ ĉC1
� ĉC2

f gC12
� ĉC3

n o
Cc

�
X
c12c3

ĉC1
� ĉC2f g C12c12 ĉC3c3 C12c12C3c3h jCcÞ;

C12 2 C1 � C2 ; C 2 C12 � C3 : (16)

The four-dimensional space for n ¼ 3 (g(n) ¼ 4) is split

according to the irreps A1 A2, and E. Evaluation of the opera-

tors T
ð3Þ
Cc gives the following results:

T̂
3ð Þ

A1
¼ � 1

2
ĉ2u � 3ĉ2t
� �

ĉu ;

T̂
3ð Þ

A2
¼ � 1

2
ĉ2u � 3ĉ2t
� �

ĉt ;

:

T̂
3ð Þ

Eu ¼ 1ffiffi
2

p ĉ2u þ ĉ2t
� �

ĉu ;

T̂
3ð Þ

Et ¼ 1ffiffi
2

p ĉ2u þ ĉ2t
� �

ĉt :

9=
; E (17)

It should be noted that the application of the coupling

scheme, Eq. (16), leads to the two identical operators of the E

type one of which is eliminated. Action of the operators T
ð3Þ
Cc

to the vacuum state leads to the following symmetry adapted

functions belonging to the n ¼ 3 manifold:

3;A1j i ¼ 1

2
� 30j i þ

ffiffiffi
3

p
12j i

� �
;

3;A2j i ¼ 1

2
�

ffiffiffi
3

p
21j i þ 03j i

� �
;

(18)

3; Euj i ¼ 1
2

ffiffiffi
3

p
30j i þ 12j i� �

3; Etj i ¼ 1
2 21j i þ ffiffiffi

3
p

03j i� �
)

E

The basis set for n ¼ 4 can be decomposed into three irreps

of Td: A1 þ 2E. Direct evaluation of the symmetry adapted ba-

sis functions by means of the procedure so far described gives

the following expressions:

4;A1j i ¼ 1

2
ffiffiffi
2

p ffiffiffi
3

p
40j i þ

ffiffiffi
2

p
22j i þ

ffiffiffi
3

p
04j i

� �
4;A2j i ¼ 0

4; Euj i ¼ 1ffiffi
2

p 04j i � 40j ið Þ
4; Etj i ¼ 1ffiffi

2
p 13j i � 31j ið Þ

)
E

4; Euj i ¼ 1ffiffiffiffi
10

p �2 40j i þ ffiffiffi
6

p
22j i� �

4; Etj i ¼ 1ffiffiffiffi
10

p � 31j i þ 3 13j ið Þ

)
E (19)

4; Eyj i ¼ 1ffiffiffiffi
10

p 2 04j i � ffiffiffi
6

p
22j i� �

4; Etj i ¼ 1ffiffiffiffi
10

p 13j i � 3 31j ið Þ

)
E

One can see that the dimension g ¼ 7 of the full vector space

in Eq. (19) exceeds the dimension g(n ¼ 4) ¼ 5 and thus this set

contains linearly dependent functions. By comparing the basis

in Eq. (19) with the result of the group-theoretical classification

one can see that an excessive pair E type functions is present.

The case of n ¼ 4 illustrates what one can expect at the

subsequent steps of the so far described approach, namely,

the presence of several identical irreps resulting in an exces-

sive dimension of the space. Therefore each step of the
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procedure should be supplemented by the Gram-Schmidt

orthogonalization within the repeated irreps that takes an arbi-

trary basis and generates a new orthogonal one excluding

thus excessive functions. It does this by sequentially process-

ing the list of vectors and generating a vector perpendicular

to the previous vectors in the list. As a result, the obtained

vectors are linearly independent. This should be taken into

account in the design of the computer program. It should be

noted that u-components of all E bases are automatically or-

thogonal to the u-components, and, of course, the orthogonal-

ity remains between different irreps and between the func-

tions from the sets arising from different n. Due to this fact,

the Gram-Schmidt procedure of orthogonalization is to be

applied only to the corresponding basis functions of the same

irreps (let’s say, to the u type functions belonging to the E

bases) with the same n. For example, this procedure applied

to three Eu functions for n ¼ 4 can be demonstrated by the

Wolfram’s Mathematica 7 notebook:

In½2� ¼ Orthogonalize

	


� 1ffiffiffi

2
p ; 0;

1ffiffiffi
2

p
�
;



� 2ffiffiffiffiffi

10
p ;

ffiffiffi
6

pffiffiffiffiffi
10

p ; 0

�
;



0;

ffiffiffi
6

pffiffiffiffiffi
10

p ;� 2ffiffiffiffiffi
10

p
���

== FullSimplify

Out½2� ¼




� 1ffiffiffi
2

p ; 0;
1ffiffiffi
2

p
�
;



� 1

2
ffiffiffi
2

p ;

ffiffiffi
3

p

3
;� 1

2
ffiffiffi
2

p
�
;



0; 0; 0

��

This shows that instead of three linearly dependent vectors

one obtains two orthogonal sets while the third vector van-

ishes. Therefore, in the case of n ¼ 4 the application of the

Gram-Schmidt procedure gives the following set of the or-

thogonal and normalized symmetry adapted functions:

4;A1j i ¼ 1

2
ffiffiffi
2

p ffiffiffi
3

p
40j i þ

ffiffiffi
2

p
22j i þ

ffiffiffi
3

p
04j i

� �
4; Euj i ¼ 1ffiffi

2
p 04j i � 40j ið Þ

4; Etj i ¼ 1ffiffi
2

p 13j i þ 31j ið Þ

)
E

4; Etj i ¼ 1ffiffi
2

p 13j i � 31j ið Þ
4; Euj i ¼ 1

2
ffiffi
2

p � 04j i þ ffiffiffi
6

p
22j i � 40j i� �

)
E

(20)

The procedure can be continued to reach a required number n.

Group-Theoretical Classification for the
Vibrations T2 in Td Symmetry

The standard T2 basis n ! yz, g ! xz, f ! xy for Td will be

used.[25] The functions |nnngnfi can be built by applying the

creation operators as follows:

nnngnf
��  ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nn!ng!nf!
p ĉ

nn
n ĉngg ĉ

nf
f 0 00j i: (21)

Each level with a given n ¼ nn þ ng þ nf

En ¼ �hx nn þ ng þ nf þ 3

2

� �
(22)

is g nð Þ ¼ 1
2 nþ 1ð Þ nþ 2ð Þ-fold degenerate while the dimension

of the vibrational space is

ptN ¼ 1

2

XN
n¼0

nþ 1ð Þ nþ 2ð Þ ¼ 1

6
Nþ 1ð Þ Nþ 2ð Þ Nþ 3ð Þ: (23)

The set of the vibrational states with a given n can be corre-

lated with a certain value of the angular orbital momentum l

and parity (�1)l where, l¼ 0, 2…n for even n and l¼ 1, 3…n

for odd n.[32] Then classifying these states accordingly to the

irreps of Td one obtains the results listed in Table 2.

Symmetry Adapted Basis for a
Three-Dimensional Harmonic Oscillator

The multivibronic operators T
ðnÞ
Cc are constructed from the

products ĉnnn ĉngg ĉnff with a definite n ¼ nn þ ng þ nf and with

C being one the irreps of Td (A1,A2,E,T1,T2) corresponding to

the set of the vibrational function belonging the energy level

n. The operators T
ðnÞ
Cc realize the transformation from the basis

|nnngnfi with a certain n (a definite vibrational level) to the

symmetry adapted basis |n,Cci:
n;Ccj i ¼

X
nn ng nf

nnþngþnf¼nð Þ
c nn ng nf; m Cc
� �

nn ng nf
�� 

; (24)

Creation operators ĉn, ĉg, and ĉf belong to the irrep T2 that

means that in the case under consideration T
ð1Þ
Cc ¼ ĉCc. Then

for n ¼ 1 one obtains:

T
1ð Þ
T2c 000j i ¼ 1; T2cj i: (25)

This leads to the following obvious result:

ĉn nn ¼ 0; ng ¼ 0; nf ¼ 0
��  ¼ nn ¼ 1; ng ¼ 0; nf ¼ 0

��  � 1; T2nj i;
ĉg nn ¼ 0; ng ¼ 0; nf ¼ 0
��  ¼ nn ¼ 0; ng ¼ 1; nf ¼ 0

��  � 1; T2gj i;
ĉf nn ¼ 0; ng ¼ 0; nf ¼ 0
��  ¼ nn ¼ 0; ng ¼ 0; nf ¼ 1

��  � 1; T2fj i:
(26)

Then general expressions for T
ð2Þ
Cc , T

ð3Þ
Cc , etc. can be used. In this

way, one obtains the following result for the T
ð2Þ
Cc operators:

T̂
2ð Þ

A1
¼ 1ffiffiffi

3
p ĉ 2

n þ ĉ 2
g þ ĉ 2

f

� �
;

T̂
2ð Þ

Eu ¼ 1ffiffi
6

p �ĉ 2
n � ĉ 2

g þ 2ĉ 2
f

� �
;

T̂
2ð Þ

Et ¼ 1ffiffi
2

p ĉ 2
n � ĉ 2

g

� �
;

9=
; E (27)

Table 2. Group-theoretical classification of the vibrational states for T2
vibrations in Td symmetry.

n g(n) l (vibrational irreps) Vibrational irreps

0 1 0 (A1) A1
1 3 1(T2) T2
2 6 0(A1); 2 (E, T2) A1, E, T2
3 10 1(T2); 3(A1, T1, T2) A1, T1, 2 T2
4 15 0 (A1); 2(E, T2); 4(A1, E, T1, T2) 2A1; 2E, T1, 2T2
5 21 1(T2); 3(A1, T1, T2); 5(E, T1, 2T2) A1, E, 2T1, 4T2
6 28 0(A1); 2(E, T2); 4(A1, E, T1, T2);

6(A1, A2, E, T1, 2T2)

3A1, A2, 3E, 2T1, 4T2

FULL PAPER WWW.Q-CHEM.ORG

2962 International Journal of Quantum Chemistry 2012, 112, 2957–2964 WWW.CHEMISTRYVIEWS.ORG



T̂
2ð Þ

T2n
¼ ĉg ĉf ;

T̂
2ð Þ

T2g ¼ ĉn ĉf ;

T̂
2ð Þ

T2f
¼ ĉn ĉg :

9>>=
>>; T2

Applying operators T
ð2Þ
Cc to the vacuum state T

ð2Þ
Cc |000i ¼

|2,Cci one obtains the six-dimensional vibrational basis for n ¼
2 with C ¼ A1,E,T2 in full agreement with the result of the

group-theoretical assignation (Table 2). The final results for the

normalized states (which are also orthogonal) are the following:

2;A1j i ¼ 1ffiffiffi
3

p 200j i þ 020j i þ 002j ið Þ;

2; Euj i ¼ � 1ffiffiffi
6

p � 200j i � 020j i þ 2 002j ið Þ

2; Etj i ¼ � 1ffiffiffi
2

p � 200j i � 020j ið Þ

9>>=
>>;E (28)

2; T2nj i ¼ 011j i
2; T2gj i ¼ 101j i
2; T2fj i ¼ 110j i

9=
; T2

From the direct product of C(n ¼ 2) � T2 one finds the follow-

ing irreps forming the 18-dimensional space for n ¼ 3: (A1 þ E

þ T2) � T2 ¼ T2 þ (T1 þ T2) þ (A1 þ E þ T1 þ T2) ¼ A1 þ E þ
2T1 þ 3T2. By comparing these irreps with those predicted by

the group-theoretical assignation (A1, T1, 2T2) one can con-

clude that this 18-dimensional space contains linearly depend-

ent vectors and therefore, beginning from this step, the Gram-

Schmidt procedure of orthogonalization is to be applied. The

next steps are quite similar to those so far described and will

not be given here.

Symmetry Adapted Electron-Vibrational Basis

The evaluation of the vibrational basis for each type of the

active modes can be extended to an arbitrary value of n by

the application of the multivibronic operator of the order n

to the vacuum state with the subsequent Gram-Schmidt

procedure at each step n. The operator T
ðnÞ
Cc can be built

by extending the consequent coupling procedure to the

order n:

T̂
nð Þ

Cc ¼ ĉC1
� ĉC2

f g C12
� ĉC3

f g C123
…� ĉCn

f g Cc;

C12 2 C1 � C2 ; C123 2 C1 � C2 � C3 …; C 2 Cn�1 � Cn:

(29)

Then the vibrational functions for the active vibrations can

be combined to get the total vibrational basis with the

given symmetry. For example, for the two basis sets |n1,

m1C1c1i and |n2, m2C2c2i one can directly use the coupling

scheme, Eq. (12), within which one obtains the symmetry

adapted vibrational functions |n, mCucui(n ¼ n1 þ n2, Cu [
C1 � C2).

Finally, the vibrational functions |n, m Cucui are to be

coupled to the electronic ones |aCece,SMi that are eigen-func-

tions of the Hamiltonian He included in the JT/pseudo JT prob-

lem (SM are the quantum numbers of the full spin and its pro-

jection, a is the additional quantum number that enumerated

the repeated irreps Ce). To pass from the direct products of

these two sets to the symmetry adapted electron-vibrational

functions |am,n,Cci
aCece; SMj i � n; m Ctctj i ) am; n;Ccj i (30)

one should apply again the standard coupling scheme:

am; n;Ccj i ¼
X
c1c2

a Cece; SMj i n; mCtctj i CeceCtcth jCci;

C 2 Ce � Ct: (31)

This allows to achieve the final goal of the approach, namely

to evaluate the basis within which the full matrix of the JT

Hamiltonian is blocked according to the irreps of the point

group. Finally, the approach is realized as an efficient com-

puter program (Clemente-Juan et al., to be submitted) that

generates the blocks and evaluates required characteristics of

the JT systems, like optical spectra, thermodynamic characteris-

tics, etc. Although the classification of the active modes in the

present consideration is restricted by the PKS model the

approach is rather general. The procedure generates the basis

assuming only point symmetry of the system without indica-

tion of the explicit form of the vibronic coupling, so it is not

restricted by the linear terms of vibronic interactions and ap-

plicable also when the quadratic and high order terms are

taken into account. Under this condition, the approaches

based on high symmetries lose their advantages because the

actual symmetry is reduced to the point one.

Concluding Remarks

In this article, we have presented a powerful theoretical

approach to obtain an accurate solution of the dynamic

vibronic problem in large scale JT systems. The approach uses

a symmetry adapted vibronic basis to reduce the dimension of

the problem. In fact, the algorithm for the solution of the ei-

gen-problem takes full advantage of the point symmetry argu-

ments and thus allows to reduce the vibronic matrices to full

extent. The group-theoretical assignment of the vibronic states

allows to predict the symmetry labels for the vibronic levels

before evaluation. This approach is applicable to an arbitrary

form for the vibronic coupling, including linear and high order

terms.

The possibilities provided by this approach have been illus-

trated by its application to the 2e-reduced MV dodecanuclear

Keggin anion (overall symmetry Td) in which the electronic

pair is delocalized over twelve metal sites giving rise (within

PKS model) to the (1T2þ1Eþ1A1)�(eþt2) (
3T1þ3T2)�(eþt2) com-

bined JT/pseudo JT problems for the spin-singlet and spin-tri-

plet states, correspondingly.

The theoretical background presented here has been used

to elaborate an efficient computer program (Clemente-Juan

et al., to be submitted) for the numerical analysis of the multi-

mode vibronic problems. This part of the work will be pub-

lished elsewhere along with the detailed discussion of the ex-

perimental data on magnetic susceptibility and intervalence

optical bands of the 2e-reduced POMs possessing Keggin
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structure and other complex mixed POMs containing several

electrons delocalized over large metal networks.

Keywords: Jahn-Teller effect � dynamic problem � polyoxometa-

lates � Keggin anion � symmetry � mixed valency
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Drüeke, P. Chaudhuri, K. Weighardt, J. Chem. Phys. 1990, 92 178; (b) D.

R. Gamelin, E. L. Bominaar, M. L. Kirk, K. Wieghardt, E. I. Solomon, J.

Am. Chem. Soc. 1996, 118 8085.

[5] (a) A. J. Marks, K. Prassides, New. J. Chem. 1993, 17 59; (b) A. J. Marks,

K. Prassides, J. Chem. Phys. 1993, 98 4805.

[6] (a) S. A. Borshch, E. L. Bominaar, G. Blondin, G. Girerd, J. Am. Chem.

Soc. 1993, 115, 5155; (b) E. L. Bominaar, S. A. Borshch, J. J. Girerd, J.

Am. Chem. Soc. 1994, 116 5362.

[7] (a) A. Müller, F. Peters, M. T. Pope, D. Gatteschi, Chem. Rev. 1998, 98, 239;

(b) J. M. Clemente-Juan, E. Coronado, Coord. Chem. Rev. 1999, 193, 361;

(c) P. K€ogerler, B. Tsukerblat, A. Müller, Dalton Trans, 2010, 39, 21.

[8] (a) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsuker-

blat, Chem. Phys. 1995, 195, 1; (b) J. J. Borras-Almenar, J. M. Clemen-

te-Juan, E. Coronado, B. S. Tsukerblat, Chem. Phys. 1995, 195, 17; (c) J.

J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat,

Chem. Phys. 1995, 195, 29.

[9] (a) V. Z. Polinger, S. I. Boldirev, Phys. Stat. Sol. (b) 1986, 137, 241; (b) S. I. Bol-

dyrev, V. Z. Polinger, I. B. Bersuker, Fiz. Tverdogo Tela (Rus) 1981, 23, 746.

[10] N. Sakamoto, S. Muramatsu, Phys. Rev.B, 1978, 17, 868.

[11] Yu. E. Perlin, B. S. Tsukerblat, In The Dynamical Jahn-Teller Effect in

Localized Systems; Yu. E. Perlin, M. Wagner, Eds.; Vol. 7; Elsevier: Am-

sterdam, 1984; pp. 251–346.

[12] P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. Engl. 1994, 33,

2024.

[13] M. D. Kaplan, B.G. Vekhter, Cooperative Phenomena in Jahn-Teller

Crystals; Plenum: New York, 1995.

[14] H. K€oppel, W. Domcke, L. S. Cederbaum, Adv. Chem.Phys. 1984, 57, 59.

[15] S. Faraji, E. Gindensperger, H. K€oppel, In The Jahn-Teller effect. Funda-

mentals and Implications for Physics and Chemistry; H. K€oppel, D. R.

Yarkony, H. Barentzen, Eds.; Vol. 97; Springer, Series of Chemical

Physics: Heidelberg, 2009, pp. 239–276.

[16] G. Grosso, L. Martinelli, G. P. Parravicini, Phys. Rev. B 1995, 51, 13033.

[17] (a) D. R. Pooler, J. Phys. A 1978, 11, 1045; (b) D. R. Pooler, J. Phys.A

1980, 13, 1029.

[18] M. C. M. O’Brien, Phys.Rev. 1969, 187, 329.

[19] M. C. M. O’Brien, J. Phys.C. 1971, 4, 2524.

[20] (a) J. J. Borras-Almenar, J. M. Clemente, E. Coronado, A. V. Palii, B. S.

Tsukerblat, J. Chem. Phys. 1996, 105, 6892; (b) J. M. Clemente-Juan, J.

J. Borr�as-Almenar, E. Coronado, A. V. Palii, B. Tsukerblat, Inorg. Chem.

2009, 48, 4557; (c) J. M. Clemente-Juan, J. J. Borr�as-Almenar, E. Coro-

nado, A. V. Palii, B. S. Tsukerblat, J. Compt. Chem. 2010, 31, 1321.

[21] J. M. Clemente-Juan, E. Coronado, A. Gaita-Ari~no, In Polyoxometalate

Molecular Science, NATO ASI Series 98; J. J. Borr�as-Almenar, E. Coro-

nado, A. Müller, M. Pope, Eds.; Kluwer Acad. Publishers: Dordrecht, The

Netherlands, 2003; pp. 273

[22] (a) K. Y. Wong, P. N. Schatz, Prog. Inorg. Chem. 1981, 28, 369. (b) S. B.

Piepho, E. R. Krausz, P. N. Shatz, J. Am. Chem. Soc. 1978, 100, 2996; (c)

S. B. Piepho, J. Am. Chem. Soc. 1988, 110, 6319; (d) S. B. Piepho, J. Am.

Chem. Soc. 1990, 112, 4197.

[23] J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, A. V. Palii, B. S.

Tsukerblat, In Magnetoscience-From Molecules to Materials, J. Miller,

M. Drillon, Eds.; Wiley-VCH: Weinheim, 2001, pp. 155–210.

[24] (a) S. A. Borshch, B. Bigot, Chem. Phys. Lett. 1993, 212, 398;(b) S. A.

Borshch, Inorg. Chem. 1998, 37, 3116.

[25] S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition Metal Ions

in Crystals; Academic Press: London, 1970.

[26] I. G. Kaplan, Symmetry of multielectronic systems; Nauka: Moscow, 1969.

[27] B. S. Tsukerblat, M. I. Belinsky, V. E. Fainzil’berg, Sov. Sci. Rev. Chem.

Rev. 1987, B9, 337.

[28] J. J. Sakurai, Modern Quantum Mechanics; Addison-Wesley Publishing

Company: Boston, 1994.

[29] G. F. Koster, J. O. Dimmok, R. G. Wheeler, H. Statz, Properties of the

Thirty-Two Point Groups; MIT Press: Cambridge, MA, 1963.

[30] B. Tsukerblat, Group Theory in Chemistry and Spectroscopy; Dover:

Mineola, New York, 2006.

[31] J. S. Griffith, Irreducible Tensor Method for Molecular Symmetry

Groups; Dover Pub.: Mineola, New York, 2006.

[32] L. D. Landau, E. M. Lifshits, Quantum Mechanics: Non-Relativistic

Theory; Pergamon Press: Oxford, 1977.

Received: 24 February 2012
Revised: 30 March 2012
Accepted: 13 April 2012
Published online on 15 May 2012

FULL PAPER WWW.Q-CHEM.ORG

2964 International Journal of Quantum Chemistry 2012, 112, 2957–2964 WWW.CHEMISTRYVIEWS.ORG


