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In this critical review we review the problem of exchange interactions in polynuclear metal

complexes involving orbitally degenerate metal ions. The key feature of these systems is that,

in general, they carry an unquenched orbital angular momentum that manifests itself in all their

magnetic properties. Thus, interest in degenerate systems involves fundamental problems related

to basic models in magnetism. In particular, the conventional Heisenberg–Dirac–Van Vleck model

becomes inapplicable even as an approximation. In the first part we attempt to answer two key

questions, namely which theoretical tools are to be used in the case of degeneracy, and how these

tools can be employed. We demonstrate that the exchange interaction between orbitally

degenerate metal ions can be described by the so-called orbitally-dependent exchange

Hamiltonian. This approach has shown to reveal an anomalously strong magnetic anisotropy that

can be considered as the main physical manifestation of the unquenched orbital angular

momentum in magnetic systems. Along with the exchange coupling, a set of other interactions

(such as crystal field effects, spin–orbit and Zeeman coupling), which are specific for the

degenerate systems, need to be considered. All these features will be discussed in detail using a

pseudo-spin-1/2 Hamiltonian approach. In the second part, the described theoretical background

will be used to account for the magnetic properties of several magnetic metal clusters and

low-dimensional systems: (i) the dinuclear face-sharing unit [Ti2Cl9]
3�, which exhibits a large

magnetic anisotropy; (ii) the rare-earth compounds Cs3Yb2Cl9 and Cs3Yb2Br9, which,

surprisingly, exhibit a full magnetic isotropy; (iii) a zig-zag CoII chain exhibiting unusual

combination of single-chain magnet behavior and antiferromagnetic exchange coupling; (iv) a

trigonal bipyramidal Ni3Os2 complex; (v) various CoII clusters encapsulated by polyoxometalate

ligands. In the two last examples a pseudospin-1/2 Hamiltonian approach is applied to account

for the presence of exchange anisotropy (150 references).

1. Introduction

Molecular magnetism represents a fascinating interdisciplinary

field of research that incorporates basic concepts of physics,

chemistry and materials science. The evolution of this field is

described in detail in several papers and books1,2 and the

contemporary state-of-the-art is summarized in the recent

book of Gatteschi et al.1 The main objects of molecular

magnetism are either magnetic molecules consisting of a finite

number of exchange coupled spin sites (molecular magnetic

clusters) or extended materials based on magnetic molecules

(molecule-based magnets).1–23 Some important materials in

this context are the so-called single molecule magnets and

single chain magnets (SMMs and SCMs),23–32 the high Tc

molecule-based ferromagnets33–41 and the multifunctional

magnetic materials.42–52 Organic molecules of increasing sizes

and large numbers of unpaired electrons are also being

explored as building blocks for molecular-based magnets.53–59

Possible applications of these materials are for use as memory

storage units of molecular size,1–3 as carriers of quantum bits

of information60–77 and as components of spintronic devices.78

Let us now focus on the molecular magnetic clusters. Apart

from their interest as SMMs, and in biophysics/biochemistry,79–82

these clusters have been shown to represent ideal model

systems for studying the exchange interactions at the molecular
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scale. Over the course of several decades, the exchange inter-

actions in these clusters have been modeled using the

Heisenberg–Dirac–Van Vleck (HDVV) Hamiltonian. This

Hamiltonian is expressed in terms of spin operators and

strictly speaking it is applicable to clusters composed by

magnetic centers having isolated ground spin states. The
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systems of this kind can be referred to as spin clusters. The

key physical feature of the HDVV interaction is that it is

magnetically isotropic. In general, the anisotropy in spin

clusters is relatively small in the sense that the parameters of

the anisotropic interactions are much smaller as compared to

those involved in the HDVV coupling. Nevertheless, there is a

second type of systems, which involves clusters comprising

magnetic ions with orbitally degenerate ground crystal field

terms. For the sake of brevity they will be referred to as

degenerate clusters. In contrast to the exchange interaction in

spin clusters, the magnetic coupling in these clusters cannot be

described in terms of spin operators only (with the exception

of some special cases). In fact, the exchange Hamiltonian has a

much more complicated form that includes orbital variables

along with spin operators. In general, the orbital degeneracy is

directly related to an unquenched orbital angular momentum

in the electronic shell that will be shown to manifest itself in

a strong magnetic anisotropy. It is to be noted that the

anisotropic interactions in systems composed of ions with

unquenched orbital angular momenta are of the same order

of magnitude as the isotropic ones.

The theoretical background of molecular magnetism dealing

with spin-clusters is highly developed and has been described

in detail in many reviews and books.1–7,14–20 On the contrary,

the problem of orbital degeneracy has not received much

attention in the field of molecular magnetism in spite of its

fundamental and practical importance. Moreover, due to its

conceptual simplicity and the availability of efficient computer

programs adapted to spin-systems, the HDVV model is

frequently used in molecular magnetism even for those cases

for which it is inapplicable even as an approximation. In these

cases, however the parameters resulting from fitting the

experimental data to the theoretical data derived from the

spin model turn out to be artificial. On the other hand, a

detailed description of the orbitally-degenerate systems

is much more complicated, and often requires the use of

complementary experimental techniques (magnetic as well as

spectroscopic) in order to obtain reliable information about

the large number of electronic and magnetic parameters.

For this reason few efforts have been devoted to the modeling

of these systems in a rigorous fashion.

In this review we will show that, in spite of the internal

complexity of the exchange problem in degenerate systems,

one can often gain insight into their key features even without

applying complicated theoretical approaches, but rather

by using only basic quantum-mechanical methods such as

perturbation theory and simple orbital schemes supplemented

by the symmetry arguments. It turns out, that the imaginative

orbital pictures can guide the reader through the subsequent

analysis of more complicated molecular clusters that are of

current interest in molecular magnetism.

Although the ability of the orbitally-dependent magnetic

interactions to create strong magnetic anisotropy was

mentioned in general terms many years ago by Van Vleck,83

this phenomenon has not been understood to any great extent

until the last decade and consequently the topic has not

explored in molecular magnetism. The present review article

is an attempt to give a description of this kind of phenomenon

in the context of its relevance to the contemporary problems of

molecular magnetism. The review summarizes the conceptual

aspects of the theory of magnetic exchange in degenerate

systems and its applications to describe the properties

of molecular magnets. Along with the general ideas and

applications, we also provide the reader with a few details on

the calculations in some simple cases for which a quantitative

analysis of the data is possible. This will permit the reader to

avoid (at least, in most cases) the reading of numerous original

papers.

The review paper is organized as follows. We begin with

Anderson’s basic concept of the kinetic exchange which leads

to the isotropic HDVV model of the exchange interaction

(Section 2). In Section 3 we discuss the inapplicability of
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the conventional isotropic HDVV Hamiltonian to model the

exchange interaction between orbitally degenerate metal ions

that possess unquenched orbital angular momenta. In Section

4 we introduce the concept of orbitally-dependent exchange

and deduce, for a particular case, the orbitally-dependent

anisotropic exchange Hamiltonian using a second-order

perturbation approach. Next we demonstrate that, in some

special cases, the exchange between orbitally-degenerate ions

can be isotropic and is described by the pseudo-HDVV

orbitally-independent exchange Hamiltonian. Finally, we

consider the case of strong spin–orbit (SO) coupling and

establish a microscopic background for the pseudo-spin-1/2

Hamiltonian that is widely used for the description of the

effective interaction involving the ground Kramers doublets

(for example, in cobalt(II) systems). Section 5 illustrates

some applications of the theory. The orbitally-dependent

exchange and magnetic anisotropy of the [Ti2Cl9]
3� unit

in the Cs3Ti2Cl9 crystalline compounds are discussed. The

orbitally-dependent exchange is considered in the rare-earth

compounds. Specifically, for the materials Cs3Yb2Cl9 and

Cs3Yb2Br9 the origin of surprising isotropy of this interaction

is revealed. The pseudo-spin-1/2 Hamiltonian approach is

applied to reveal the origin of SCM behavior of the antiferro-

magnetic zig-zag chain compound based on Co(H2L)(H2O)

units, and to the study of the magnetic properties of the

trigonal bipyramidal Ni3Os2 complex. This approach is

also illustrated by the combined data from the inelastic

neutron scattering spectra, magnetic susceptibility and specific

heat measurements in polyoxometalates encapsulating CoII

clusters of increasing nuclearities. The main results and

perspective for the field are summarized in the concluding

part of the review.

2. Basic concepts: Anderson’s model for the kinetic

exchange and Heisenberg–Dirac–Van

Vleck Hamiltonian

The basic concepts of the microscopic theory of magnetic

exchange can be illustrated by considering the spin-clusters

in which the ground terms of the constituent metal ions

are orbitally non-degenerate. It is conventional to distinguish

the two main mechanisms of the exchange interaction,

namely, kinetic and potential. The potential exchange is

described in all textbooks on quantum mechanics and quantum

chemistry so we will focus only on the kinetic exchange

mechanism that in most cases is dominating in the metal

clusters.

We start with the concept of the kinetic exchange in a

simplest case of exchange-coupled pair of the metal ions

A and B, when each ion possesses one unpaired electron

occupying a non-degenerate orbital ji (i = A, B). Usually,

the magnetic exchange between the metal ions is mediated

by the bridging diamagnetic atoms (ligands), and, for this

reason, such coupling is called superexchange. The basic

idea of the kinetic superexchange proposed by Anderson84,85

is that the unpaired electrons are not fully localized on

the metal ions and some non-vanishing spin densities can

be found on the bridging ligands due to covalency. Then,

the one-electron wave-functions describing these electrons

(magnetic orbitals) are mainly of 3d-character but include also

some admixture of the bridging s and p-orbitals.

Virtual electron transfer that mixes the ground state of the

dimer with the excited charge-transfer (CT) states is mainly

caused by the kinetic energy of the electrons which justifies the

term kinetic exchange. This electron transfer gives rise to a

second-order spin-dependent splitting. Fig. 1 and 2 illustrate

different kinetic exchange mechanisms. The system under

consideration is assumed to consist of the two identical one

electron ions A and B whose energy patterns involve two

energy levels with the corresponding orbitals jA,fA and jB,fB

(Fig. 1 and 2). It is also supposed that the energy gap D
between these two levels considerably exceeds all inter-center

exchange interactions and in the ground state of the system

only the low lying levels are populated. According to Anderson’s

concept one should consider two types of the CT

configurations that give rise to two distinct mechanisms of

the kinetic exchange: (1) CT between the half-filled orbitals

(Fig. 1) and (2) CT from the half-filled to empty orbitals

(Fig. 2). The ground manifold of the pair includes the

following four microstates corresponding to four different

spin orientations of spins occupying two orbitals of different

centers: mm(MS = 1, S = 1); mk,km(MS = 0, S = 1,0);

kk(MS = �1, S = 1) where MS is the quantum number

of the total spin-projection of the dimer. The wave-functions

of the pair corresponding to these microstates should be

expressed in terms of Slater determinants in order to meet

the requirements of Pauli principle: |mm, MS = 1i= |jAjB|,

|mk,MS=0i= |jA�jB|, |km,MS=0i= |�jAjB|, |kk,MS=

�1i = |�jA�jB| where |. . .| is the sign of determinant,

ji and �ji are the spin-orbitals (for the sake of simplicity the

orbitals are assumed to be orthogonal) with spin up and down

respectively (ji � |ji(r)mi and �ji � |ji(r)ki). From

these microstates one can build the wave-functions Cgr(S,MS)

which are characterized by the quantum numbers of the total

spin of the dimer S and its projection MS. The ground terms

of the dimer are the spin-singlet (S = 0) and spin-triplet

Fig. 1 Schematic diagram for the mechanism of the antiferro-

magnetic kinetic exchange: (a) orbital population in the ground

spin-singlet state (one microstate contributing to this state) and one

CT1 configuration; (b) full spin states and exchange splitting.
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(S = 1). The corresponding wave-functions with maximum

spin projection are the following:

CgrðS ¼ 0Þ ¼ 1ffiffi
2
p ðjjA�jBj � j�jAjBjÞ;

CgrðS ¼ 1;MS ¼ 1Þ ¼ jjAjBj;
ð1Þ

When the electron transfer (that conserves the total spin value

and its projection) is switched on, the ground manifold is split

due to the mixing (interaction of configurations) with different

CT states. The first kind of CT states (denoted as CT1 in

Fig. 1) arises from the virtual electron transfer from the single-

occupied jA orbital of ion A to the single-occupied jB orbital

of ion B and also from the back transfer jB - jA (the latter is

not shown in Fig. 1). In accordance with Pauli’s exclusion

principle these CT states are spin singlets, and they are

described by the wave-functions

CA
CT1
¼ jjA�jAj; CB

CT1
¼ jjB�jBj: ð2Þ

The states CT1 are separated from the ground manifold by a

large (in comparison with the interatomic interaction) gap U

which is the energy of the Coulomb repulsion between two

electrons located at the same site and at the same orbital

(intrasite repulsion) jA(jB). These CT states are connected

with the ground spin-singlet by the matrix elements

hCB
CT1
jV̂ðjA ! jBÞjCgrðS ¼ 0Þi

¼ hCA
CT1
jV̂ðjB ! jAÞjCgrðS ¼ 0Þi ¼

ffiffiffi
2
p

tjj;
ð3Þ

where V̂ is the electron transfer operator, and tjj = hjB|ĥ|jAi
is the transfer integral connecting j orbitals (jA 2 fB

electron hopping). The operator V̂ can be associated

with the one-electron Hamiltonian ĥ for which the

dominant contribution is provided by the kinetic energy of

the delocalized electron. Note that only one of two microstates

contributing to the ground spin-singlet state (namely, the

microstate |mk, MS = 0i) is shown in Fig. 1. Using the

second-order perturbation treatment one can find that the

low lying spin-singlet E(S = 0) is stabilized with respect

to the spin-triplet due to the tjj-transfer processes by the

value

[E(S = 1) – E(S = 0)]ji-jj
= 4t2jj/U. (4)

We thus arrive at the important conclusion that the virtual

electron transfer (Fig. 1) gives rise to the antiferromagnetic

exchange contribution. Since the electronic jumps are induced

by the kinetic energy of the electrons, this kind of the exchange

is said to be ‘‘kinetic’’.

Another kind of the CT states can be obtained by the virtual

electron transfer from a half-occupied j orbital of one center

to an empty orbital f of another center (Fig. 2). This leads

to the CT states with S = 0 (CT2 state in Fig. 2) and S = 1

(CT(S = 1) state in Fig. 2). Since the electron transfer matrix

element is independent of the total spin-projection, only the

spin-triplet states (ground and CT) with maximum spin-

projection MS = 1 are shown in Fig. 2. Note also that only

one of two microstates is shown in Fig. 2 for both ground and

CT2 spin-singlet states. The gaps between the ground manifold

and CT states CT2 and CT(S = 1) are equal to U0 + D + K

and U0 + D � K, respectively, where

K =
R R

ji(1)fi(2)g(1,2)fi(1)ji(2)dt1dt2 �hjifi|ĝ|fijii (5)

is the intracenter exchange integral that is positive

(i.e., corresponds to the ferromagnetic intra-atomic exchange

coupling that validates Hund’s rule), and ĝ is the inter-

electronic repulsion, i.e., two-electron part of the Hamiltonian.

The effective energy includes also the gap D separating the

orbital energies of each center. Finally, U0 is the intrasite

Coulomb repulsion between the electrons occupying different

orbitals j and f (it is believed thatU0oU). It can be seen that

the spin-triplet state CT (S = 1) is lower in energy than

the spin-singlet state CT2 by the value 2K in accordance

Fig. 2 Schematic diagram for the mechanism of the ferromagnetic kinetic exchange: (a) orbital populations in the ground and CT configurations;

(b) full spin states and exchange splitting. Adapted from ref. 97.
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with Hund’s rule. The wave-functions for the states CT2 and

CT (S = 1) are given by

CA
CT2
¼ 1ffiffi

2
p ðjjA

�fAj � j�jAfAjÞ; CB
CT2
¼ 1ffiffi

2
p ðjjB

�fBj � j�jBfBjÞ;

CA
CT (S=1,MS=1)= |jAfA|,C

B
CT(S=1,MS=1)= |jBfB|,

(6)

where only the wave-functions with the maximum spin

projection are shown for spin triplet CT states. The matrix

elements connecting the spin-triplets prove to be the same as

those connecting spin-singlets, namely

hCB
CT2
jV̂ðjA ! fBÞjCgrðS ¼ 0Þi

¼ hCA
CT2
jV̂ðjB ! fAÞjCgrðS ¼ 0Þi

¼ hCA
CTðS ¼ 1ÞjV̂ðjB ! fAÞjCgrðS ¼ 1Þi

¼ �hCB
CTðS ¼ 1ÞjV̂ðjA ! fBÞjCgrðS ¼ 0Þi ¼ tjf;

ð7Þ

where tjf = hfB|ĥ|jAi= hfA|ĥ|jBi is the transfer parameter

for the jA - fB electron hopping. It is seen that the tjf
transfer stabilizes both the spin-singlet and the spin-triplet, but

the stabilization of the spin-triplet is stronger due to the fact

that it is closer in energy to the ground manifold. Applying

again the second order perturbation procedure one finds that

the tjf-transfer stabilizes the spin-triplet with respect to the

spin-singlet by the value

½EðS ¼ 0Þ � EðS ¼ 1Þ�j!f

¼ 2t2jf
1

U 0 þ D� K
� 1

U 0 þ Dþ K

� �
� 4t2jfK=U

2:
ð8Þ

For the sake of simplicity in eqn (8) (and in Fig. 2) it is finally

assumed that the gap D is small as compared to the Coulomb

repulsion and U E U0. Such simplifying assumptions do not

affect the qualitative results and will be used throughout this

review. The interelectronic Coulomb repulsion of two electrons

at the same center exceeds the intracenter exchange, and

therefore in eqn (8) it is also assumed that K/U { 1. One

can see that the energy of stabilization of the spin-triplet is

smaller than that of the antiferromagnetic splitting that

represents the third-order effect with respect to a small factor

K/U. Finally, the overall exchange parameter includes

both contributions, namely, antiferromagnetic related to the

electron hopping between the half-filled orbitals and ferro-

magnetic arising from the transfer from the half-filled to the

empty orbitals. For the reasons discussed thus far the first

contribution usually dominates. In this context it is worth to

mention the so-called Goodenough–Kanamori rules,86

according to which the exchange coupling is antiferromagnetic

if the electron transfer occurs between overlapping half-filled

orbitals, and it is ferromagnetic if the electron virtually jumps

from a half-filled to an empty orbital or alternatively, from a

filled orbital to a half-filled one.

It is important to note that Anderson’s mechanism of

kinetic exchange demonstrated for a simple example of two

one-electron centers can be extrapolated to a general case of

the multielectron ions in polynuclear clusters that leads to the

HDVV model. The magnetic and spectroscopic properties of a

majority of known molecular magnets can be reproduced by

the eigen-values of the isotropic spin HDVV Hamiltonian:

Ĥex(A,B) = �2JŝAŝB, (9)

where ŝA and ŝB are the full spin operators of the many-

electron metal centers. Here J is the multielectron exchange

parameter which incorporates all pairwise virtual electron

transfer pathways connecting half-filled orbitals of the coupled

ions in their ground states. In general, along with the kinetic

exchange the full multielectron exchange parameter includes

also the contributions of the potential exchange. Such many-

electron spin Hamiltonian constitutes the basis for the HDVV

exchange model1,14,15,84–86 which is widely used in molecular

magnetism and solid state physics.

3. Restrictions of Heisenberg–Dirac–Van Vleck

model

The HDVV model is rather general, but, at the same time,

has a set of distinct restrictions that are to be especially

emphasized in view of the main topic of this review. It should

be stressed that the derivation of the HDVV Hamiltonian

assumes interactions between orbitally non-degenerate ions,

i.e. of ions in which the active orbital space of each center

comprises only half-filled magnetic orbitals (as shown in

Fig. 3, left part), and doubly occupied orbitals. Therefore

the HDVV model is only applicable to systems comprising

ions whose ground terms are orbitally non-degenerate and well

isolated from the excited ones (spin-clusters). This is valid for

the half-filled shells (t2 and/or e) of transition metal ions in an

octahedral crystal field, for example, high spin FeIII ions with

the ground term 6A1g(t
3
2ge

2
g), Cr

III ions with the half-filled t2
shell giving rise to 4A1g(t

3
2g) term, etc. In general, the ground

term proves to be an orbital singlet for all transition metal ions

in a strong low-symmetry crystal field that removes the orbital

degeneracy and separates the ground state from the excited

ones. If the low symmetry field is comparable with an effective

energy of the exchange coupling the HDVV Hamiltonian also

can not be applied and the exchange problem should be

specially treated with due account for the pseudo-degeneracy.

Alternatively, when the orbital schemes include empty

orbitals there are several electronic microstates with the same

energy, which means that the corresponding crystal field term

(multi-electron state) is orbitally degenerate as shown in the

right side of Fig. 3 for different orbital configurations of the

transition metal ions.

Such systems involving orbitally degenerate ions cannot be

described by the HDVV model and for this reason they are

referred to as non-Heisenberg systems. Fig. 4 shows electronic

configurations of the d-ions in the octahedral crystal field (in

conventional notations) with the indication on possible high

spin (h.s.) and low-spin (l.s.) terms. Each scheme gives rise to a

definite strong crystal field term although in general the terms

are represented by the mixtures of different configurations (for

instance, see discussion of the cobalt (II) problem in Section 4.2).

From the scheme of electronic configurations one can

conclude that only two electronic configurations, d3 and d5,

give rise to orbital singlets in this symmetry.
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4. Magnetic exchange in clusters containing

orbitally-degenerate metal ions: concept of

orbitally-dependent exchange and pseudo-spin-1/2

Hamiltonian

4.1 Orbitally-dependent exchange

Let us consider a special case of the degenerate system in

which one of the constituent metal ions is orbitally degenerate

and carries an orbital angular momentum while the second

one is in an orbital singlet possessing a non-vanishing spin.

This situation occurs in a simple system in which one ion

(let say, A) possesses the ground term 2T2g(t
1
2g) (state with

fictitious orbital angular momentum lA = 1) in an ideal

octahedral surrounding, whereas the ion B is located in an

octahedral surrounding compressed along the tetragonal axis

so that the orbital degeneracy is removed and the ground term

of this ion is the orbital singlet 2B2g(b
1
2g). This situation can

occur also in a heteroligand system in which an effective

low-symmetry crystal field is induced by the ligand substitution.

The entire system represents a corner shared dimer of D4h

symmetry and the tetragonal axis of the system coincides with

the molecular A–B axis and with the local tetragonal axis

along which the surrounding of the ion B is distorted

(Fig. 5a). Thus, the exchange interaction should correspond

to a 2T2g(t
1
2g) #

2B2g(b
1
2g) scheme (Fig. 5b).

It should be emphasized that Anderson’s basic concept of

kinetic exchange is applicable not only for the spin systems but

also in the case of degeneracy (although the HDVV model is

valid for the spin systems only). Thus, the kinetic exchange

appears in the second order of perturbation theory due to the

mixing of the states belonging to the ground manifold with the

excited charge transfer (CT) states in which one electron is

transferred from site A to site B. The one-electron t2g-basis set

for ion A is the following: xp YZ, Z p XZ, z p XY. For ion

Fig. 4 Electronic configurations of the d-ions in octahedral crystal field.

Fig. 3 Orbital schemes illustrating HDVV and non-Heisenberg systems. Adapted from ref. 97.

Fig. 5 The illustration for the 2T2(t
1
2) #

2B2(b
1
2)-exchange problem:

(a) topology of the system and coordinate axes; (b) tetragonal splitting

for the site B and the scheme of the transfer processes in the kinetic

exchange mechanism.
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B we have a b2g orbital, b2g p XY, and e-orbitals y p YZ,

e p XZ. In the case under consideration there are two kinds

of one-electron transfer processes allowed by the overall

tetragonal symmetry of the dimer. The first kind involves the

processes xA - yB and ZA - eB. These processes are associated
with the p-overlap of the orbitals shown in Fig. 6 and are

described by the hopping parameter tp = t(x,y) = t(Z,e).
Another kind of transfer allowed by the symmetry is a

d-transfer that is described by the hopping parameter td =

t(z,b2g). It is believed that tp c td, so a relatively small d-type
contribution to the overall exchange can be neglected. The

p-transfer processes contributing to the kinetic exchange are

shown in Fig. 7a. The total spin of the dimer can take two

values S = 1 and S = 0, so the ground manifold includes the

spin-triplets and the spin-singlets. The spin-triplet states with

the maximum spin projection MS = 1 are expressed in terms

of Slater determinants as follows:

cx(S= 1)= |xAb
B
2g|, cZ(S= 1)= |ZAb

B
2g|, cz(S= 1)= |zAb

B
2g|.

(10)

Each spin-singlet is the superposition of two Slater determinants,

for example:

cxðS ¼ 0Þ ¼ 1ffiffi
2
p ðjxA�b

B

2gj � j�xAbB2gjÞ; ð11Þ

where xA and �xA are the spin-orbitals with spin-up and spin-

down, respectively.

The ground states cz(S = 1) and cz(S= 0) cannot be mixed

with the CT states since the d-transfer is neglected. For this

reason the second-order corrections to the energies of these

states are vanishing:

Ez(S = 0) = Ez(S = 1) = 0. (12)

On the contrary, the states in which the orbitals xA or ZA are

occupied by one electron can be mixed with the CT states

through the p-transfer processes. For example, the state

cx(S = 1) is mixed with the CT spin-triplet cy(S = 1) =

|bB2gyB| separated from the ground state by the energy gap

U–K, with U and K being the intraatomic Coulomb and

exchange energies, respectively.84,85 This mixing is defined by the

electron transfer matrix element hcx(S= 1)|Ĥtr|cy(S=1)i=�tp
giving rise to the following second-order correction:

ExðS ¼ 1Þ ¼ � t2p
U � K

: ð13Þ

The same expression can be found for the energy EZ(S = 1).

Similarly, the second-order corrections to the energies of

spin-singlets are found to be

ExðS ¼ 0Þ ¼ EZðS ¼ 0Þ ¼ � t2p
U þ K

; ð14Þ

where U + K is the energy gap between the ground state and

the CT spin-singlets. Eqn (12)–(14) show that the exchange

splittings of different states belonging to the ground manifold

are different and depend on the occupation of the orbitals.

For this reason, as distinguished from the HDVV exchange in

spin-clusters, the exchange coupling involving orbitally-degenerate

ions is orbitally-dependent.

The orbitally degenerate ions in crystal fields, in general,

possess orbital magnetic moment which means that the matrix

elements of the orbital angular momentum operators

LX,LY,LZ have non-vanishing matrix elements within the

crystal field wave-functions. Of course, these matrix elements

(and corresponding mean values of the orbital magnetic

contributions) are different from those for the free ions. It is

conventional to use the so-called T–P isomorphism87 that

allows one to simplify calculations and to gain insight into

the magnetic properties of metal ions. According to T–P

isomorphism the cubic orbital triplet on site A can be regarded

as the state with fictitious orbital angular momentum lA = 1.

This means that the 3 � 3 matrices of the orbital angular

momentum operators within the three functions of the orbital

triplet in a cubic field and those within the set of three atomic

p-functions are different only by a common numerical factor.

Then the functions of the dimer can be labeled as |mA
l ;S,MSi,

where S = 0,1 is the total spin of the pair, and mA
l = 0,�1 is

the projection of the fictitious orbital angular momentum of

the ion A. Note that the functions xA and ZA are the linear

combinations of the states with mA
l = �1 while the function

zA represents the state with mA
l = 0. Since the symmetry of the

pair is axial (tetragonal), each energy level is characterized

(along with the spin S) by |mA
l |. Using this labeling, one can

Fig. 6 Overlap scheme associated with the tp-transfer.

Fig. 7 Possible electron transfer processes (a) and energy pattern

(b) for the 2T2g(t
1
2g)#

2B2g(b
1
2g)-exchange problem. Only the first steps

of the two-step processes are shown.
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present the energy levels of the exchange-coupled pair in the

following form:

E(mA
l = 0;S) = 0,

EðjmA
l j ¼ 1;SÞ

¼ � t2p
U þ K

þ 1

2

t2p
U þ K

� t2p
U � K

� �
SðS þ 1Þ:

ð15Þ

The entire energy pattern of the exchange splittings is essentially

non-Heisenberg and does not follow Lande schemes (Fig. 7b).

The ground multiplet with the energy �t2p/(U � K) possesses

S = 1 and mA
l = �1. This S = 1 level is separated from the

first excited S = 0 level by the gap t2p
1

U�K � 1
UþK

� �
� t2p

U
K
U
and

one can see that the orbitally-dependent kinetic exchange in

this case produces a weak ferromagnetic effect. One can easily

demonstrate that the energies in eqn (15) that have been

obtained as a result of a direct calculation are the eigenvalues

of the following exchange Hamiltonian:

Ĥex ¼�
1

4

3t2p
U�K

þ t2p
UþK

� �
l̂
2

ZAþ
t2p

UþK
� t2p
U�K

� �
l̂
2

ZAŝAŝB;

ð16Þ

where lẐA is the Z-component of the fictitious orbital angular

momentum operator for the ion A. In fact using as a basis the

states |mA
l ,SMSi and taking into account that hmA

l |l
2̂
ZA|m

A
l i=

(mA
l )

2 and

hSMS|ŝAŝB|SMSi = hSMS|
1
2
I(ŝA+ŝB)

2 � ŝ2A�ŝ2Bm|SMSi
= 1

2
[S(S + 1)�3

2
]

one easily arrives at the energies given by eqn (15). It is

important to emphasize that this exchange Hamiltonian is

drastically different from the HDVV spin-Hamiltonian and

includes not only spin operators but also the orbital matrix l2̂Z.

The first term (term pl2̂ZA) is a pure orbital part, while the

second-term (term pl2̂ZAŝAŝB) represents a mixed spin-orbital

part. Such a complicated structure of the Hamiltonian is the

main feature of the degenerate systems that distinguishes them

from the exchange Hamiltonian for spin-clusters. In a general

case, the orbitally-dependent Hamiltonian contains also the

termpŝAŝB which is of the same form as HDVVHamiltonian.

In this section the energy pattern has been directly calculated

in a simple case on the basis of Anderson’s model and then

the concept of the orbitally-dependent exchange has been

illustrated. The orbitally-dependent effective Hamiltonian

(that, in fact, is a starting point for the theoretical treatment

of degenerate systems) can be derived in its general form which

means for all electronic configurations and crystal field terms

by taking also into account for their mixing (see articles 88–96;

for a full discussion see the review article 97).

Another important difference between the isotropic HDVV

exchange and the orbitally-dependent exchange is that the

latter is strongly magnetically anisotropic. In fact the analysis

of the labeling of the energy levels in Fig. 7b shows that the

orbitally-dependent exchange in the 2T2g(t
1
2g) #

2B2g(b
1
2g) pair

produces a strong uniaxial magnetic anisotropy with the C4

axis which proves to be the easy axis of the magnetization.

Thus, in the presence of an external magnetic field directed

along the C4 axis the orbital part of Zeeman interaction

�bkL̂ZHZ splits the level |mA
l �1, S = 1i into two Zeeman

sublevels |mA
l +1, S = 1i and |mA

l �1, S = 1i. In contrast,

when the field is perpendicular to the C4 axis, the orbital

Zeeman interaction does not produce any splitting because all

matrix elements of the operators �bkL̂XHX and�bkL̂XHX are

vanishing within the |mA
l = �1, S = 1i level. The same is true

for the first excited level, although in this case S = 0 and

therefore, only the orbital part of Zeeman interaction is

operative. As far as the highest level is concerned, one observes

that it is not split by the orbital Zeeman interaction in a

parallel magnetic field, because this level has ml
A = 0. The

main consequence of these features is that a strong magnetic

anisotropy with wJ 4 w> can be expected in the wide

temperature range. We thus arrive at the conclusion that this

case is somewhat similar to the classical case represented by an

s–p-molecule (Van Vleck and Levi)98–101 when the pair of ions

is highly anisotropic due to the orbitally-dependent exchange

in spite of the fact that the constituent ions are magnetically

isotropic (as they are in ideal octahedral ligand surroundings).

To complete the discussion of the orbitally-dependent

exchange it should be mentioned that there is a remarkable

equivalence of the exchange problems 2T2g(t
5
2g) #

2B2g(e
4
gb

1
2g)

(Fig. 8a) and 2T2g(t
1
2g) # 2B2g(b

1
2g) (Fig. 8b) which can be

attributed to the fact that the electron and the hole transfer

processes contribute equally to the kinetic exchange. This is a

general rule that is valid when one deals with the so-called

complementary electronic configurations87 of the exchange

coupled metal ions.

4.2 Special cases of HDVV-like interactions between

orbitally-degenerate ions

The analysis of different contributions to the kinetic exchange

between the orbitally-degenerate metal ions shows that in

some special (but at the same time rather important) cases

this interaction proves to be orbitally-independent and

isotropic and can be described by the Hamiltonian that has

the same form, eqn (9), as the true HDVV Hamiltonian

(we will term it pseudo-Heisenberg Hamiltonian).

In the first case the exchange splitting is assumed to mainly

arise from electron transfer within orbitally-nondegenerate

sub-shells of the orbitally-degenerate metal ions. The two

notable examples of this situation are represented by

the corner-shared pairs of octahedrally-coordinated high-

spin FeII and CoII ions with the overall symmetry D4h.

In these systems not only t2g orbitals but also eg orbitals,

Fig. 8 Orbital schemes (selected microstates) for the dimer 2T2g(t
5
2g) #

2B2g(e
4
gb

1
2g) (a) and the complementary system 2T2(t

1
2g) #

2B2(b
1
2g) (b).
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u p 3Z2�r2, v p X2�Y2, are occupied. The s-transfer uA 2

uB shown in Fig. 9 is often the dominating process so that the

p-transfer between weaker overlapping t2g-orbitals seems to be

less significant and can be neglected.

The ground cubic crystal field term of the high-spin FeII ion is
5T2g(t

4
2ge

2
g). It is notable that the s-transfer occurs within the

orbitally non-degenerate e2g(
3A2g)-subshells of the FeII ions

(Fig. 10a). The exchange interaction between these subshells

taken separately is obviously of the HDVV form. One can prove

(and it is intuitively clear) that, in this case, the entire exchange

splitting in the FeII–FeII pair can be described by the pseudo-

Heisenberg exchange Hamiltonian with a good accuracy. The

term ‘‘pseudo’’ reflects the fact that, as distinguished from the

eigenvalues of the HDVV Hamiltonian, the energy levels are

nine-fold orbitally degenerate and contain several multiplets.

Fig. 10b shows the s-transfer process in a dimer composed

of two high-spin CoII ions. The wave-function of the ground

state of CoII ion represents a mixture of two 4T1g terms arising

from two strong crystal field electronic configurations t52ge
2
g

and t42ge
3
g:

Fgr(
4T1g)=C1|t

5
2g(

2T2g)e
2
g(
3A2g),

4T1gi+C2|t
4
2g(

3T1g)e
3
g(
2Eg),

4T1gi,
(17)

where the coefficients are found by diagonalizing the matrix of

the Coulomb mixing of two 4T1g-terms.87 One can find the

following coefficients defining the degree of the mixture:

C1ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þð�ÞwÞ=2

q
; w ¼ 9Bþ 10Dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð9Bþ 10DqÞ2 þ 144B2

q : ð18Þ

Providing Dq/B { 1 (weak crystal field limit) one finds

C1 ¼ 2=
ffiffiffi
5
p

, C2 ¼ 1=
ffiffiffi
5
p

(4F-state of the free CoII-ion). In the

strong field limit (Dq/B c 1) one obtains C1 = 1, C2 = 0.

Taking the values B=971 cm�1 andDq=840 cm�1 for the

CoII complex with H2O ligands87 one obtains C1 E 0.956,

C2 E 0.294. The second-order kinetic exchange corrections

contain the squared matrix elements, so, in order to understand

the relative importance of two 4T1g terms for the overall

kinetic exchange splittings, one has to compare the squares

of the coefficients C1 and C2 that can be estimated as: C2
1 E

0.914, C2
2 E 0.086. One thus arrives at the conclusion that the

contribution of the 4T1g(t
4
2ge

3
g) term to the kinetic exchange

splittings is small as compared with that of the 4T1g(t
5
2ge

2
g)

term. Therefore the exchange interaction between two high-

spin CoII ions can be described with a high accuracy

by considering the 4T1g(t
5
2ge

2
g) # 4T1g(t

5
2ge

2
g)-exchange as

schematically shown in Fig. 10b. Assuming ts c tp we thus

obtain that the CoII–CoII exchange interaction is related to

the electron transfer between the orbitally nondegenerate

e2g(
3A2g)-subshells and can approximately be described by the

pseudo-Heisenberg Hamiltonian. This statement forms the

background of the so-named Lines model102,103 that is widely

used in magnetochemistry and spectroscopy of exchange

coupled CoII compounds.104–106 In the framework of this

model the first-order orbital angular momentum of each

high-spin CoII ion is taken into account by considering the

SO coupling and (if necessary) the low-symmetry crystal field

which distorts the octahedral ligand surroundings of the CoII

ion, whereas the exchange interaction between the CoII ions is

taken in the HDVV form. An interesting example of the

system for which the Lines model proves to be a good

approximation is provided by the heterotrimetallic complex

[Co2PdCl2(dpa)4] in which two magnetic CoII ions are separated

by the non-magnetic PdII ion.107 Due to the large spatial

extension of 4d-orbitals the 3dZ2-orbitals of the CoII ions

strongly overlap through the 4dZ2 orbital of the PdII ion giving

rise to the strong s-transfer between the orbitally-nondegenerate

electronic subshells and thus to the pseudo-Heisenberg

exchange Hamiltonian. Due to the importance of the orbital

magnetic contribution and related magnetic anisotropy, the

study of dinuclear and polynuclear cobalt(II) compounds

became a special area of molecular magnetism (summarized

in the recent review article 108). This area is closely related to

single molecular magnetism and holds promise for the

important trends such as the design of new SMMs in a

controllable way and low temperature magnetic refrigerants

which can replace helium-3.109

The second important case can be illustrated by considering

the magnetic exchange in a corner-shared d1–d1 dimer of D4h

symmetry in which the octahedral ligand environment of the

ion A is strongly stretched along the tetragonal axis of

the dimer, while the octahedral environment of the ion B is
Fig. 10 Kinetic exchange mechanisms in FeII–FeII (a) and CoII–CoII

(b) dimers.

Fig. 9 Overlap scheme associated with the ts-transfer.
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compressed along this axis. In this case the 2T2g(t
1
2g) cubic term

is split in such a way that the ground term of the ion A is the

orbital doublet 2Eg(e
1
g), while the ground term of the ion B is

the orbital singlet 2B2g(b
1
2g) so we deal with the 2Eg(e

1
g) #

2B2g(b
1
2g) exchange problem. Only the p-transfer is taken into

account as depicted in Fig. 11a. The functions yA and eA are

the linear combinations of the states with the fictitious orbital

angular momentum projections mA
l = �1. Evaluation of the

energy levels leads to the energy pattern shown in Fig. 11b,

from which one can observe a weak ferromagnetic exchange

splitting of the order of (t2p/U)(K/U):

EðML ¼ �1;SÞ ¼ � t2p
U þ K

þ 1

2

t2p
U þ K

� t2p
U � K

� �
SðS þ 1Þ:

ð19Þ

These energies are the eigenvalues of the exchange Hamiltonian

Ĥex ¼ �
1

4

t2p
U þ K

þ 3t2p
U � K

� �
þ t2p

U þ K
� t2p
U � K

� �
ŝAŝB;

ð20Þ

which formally coincides with the HDVV Hamiltonian, eqn (9),

if one omits the spin-independent term in eqn (20) and sets

J ¼ 1

2

t2p
U � K

� t2p
U þ K

� �
: ð21Þ

It is to be noted, however, that the energy pattern cannot be

referred to as a true HDVV scheme due to presence of the

non-vanishing orbital magnetic contribution. One can see that, as

distinguished from the spin clusters, the system under considera-

tion exhibits strong uniaxial magnetic anisotropy with the tetra-

gonal axis being an easy axis of the magnetization. At the same

time this anisotropy is associated with the

single-ion anisotropy of the orbitally-degenerate ion A but

not with the exchange interaction which is isotopic and

orbitally-independent (pseudo-Heisenberg) in the case under

consideration. This statement seems to be valid for all

situations when the number of equal hopping parameters

contributing to the kinetic exchange is equal to the total

orbital multiplicity of the system. In fact, here we have two

equal hopping parameters tyy = tee � tp and the total orbital

multiplicity is also equal to two.

4.3 The case of strong spin–orbit coupling: pseudo-spin-1/2

Hamiltonian

In Sections 4.1 and 4.2 we focused solely on the exchange

interaction and omitted the role of the spin–orbit (SO)

coupling in the discussion which is inherent to the problem

of the orbital degeneracy. To illustrate the effect of

SO coupling let us turn back to the case of the 2T2g(t
5
2g) #

2B2g(e
4
gb

1
2g) exchange coupled pair shown in Fig. 8a. The

effective SO coupling Hamiltonian acting within the 2T2g(t
5
2g)

term of the ion A is presented as:5

ĤSO = �kl lÂŝA, (22)

where lÂ is the operator of the fictious orbital angular

momentum of the ion A, k is the orbital reduction factor

and l is the SO coupling parameter that is negative for the case

under consideration (more than half-filled t2-shell). The minus

sign in eqn (22) appears due to the fact that the matrices of the

orbital angular momentum defined in the cubic T2g basis and

the free atomic p-basis differ in sign.87 The SO coupling splits

the 2T2g-term (state with lA = 1, mA
l = 0, �1) into the

Kramers doublet G7 (state with the total angular momentum

jA = 1/2) and the quadruplet G8 (jA = 3/2), with the ground

state being the Kramers doublet (Fig. 12). In many cases the

energy gap 3
2
k|l| between the states G7 and G8 significantly

exceeds the exchange splitting. At low temperatures when only

the ground Kramers doublet is significantly populated,

we arrive at the widely used effective pseudo-spin-1/2

Hamiltonian approach110–121 in which the excited spin-orbital

multiplets are neglected and only the ground Kramers

doublet is taken into account. Within this formalism the initial
2T2g(t

5
2g) # 2B2g(e

4
gb

1
2g) exchange problem is reduced to the

G7(t
5
2g) # 2B2(e

4
gb

1
2g) problem in which a ground Kramers

doublet (pseudo-spin-1/2) of the ion A is coupled with a true

spin 1/2 of the ion B as illustrated in Fig. 12.

The ground Kramers doublet level for the ion A can be built

by means of the Clebsch–Gordan coupling scheme in which

two angular momenta lA = 1 and sA = 1/2 are coupled to give

states with the total angular momenta jA = 3/2 and jA = 1/2.

Then, the wave functions |jAm
A
j i are expressed in terms of the

uncoupled basis |lAm
A
l ,sAm

A
s i � |mA

l ,m
A
s i as follows:

jjA ¼ 1=2; mA
j ¼ �1=2i;¼

X
mA
l
;mA

s

C
1=2;mA

j

1mA
l
;1=2mA

s
jmA

l ;m
A
s i;

ð23Þ

Fig. 11 Electron transfer processes (a) and energy pattern (b) for the
2Eg(e

1
g) #

2B2g(b
1
2g)-exchange problem.

Fig. 12 Effective pseudo-spin-1/2 interaction in the G7(t
5
2g) #

2B2(e
4
gb

1
2g)-pair.
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where C
1=2;mA

j

1mA
l
;1=2mA

s
are the Clebsch–Gordan coefficients122 and

the summation runs over all quantum numbers mA
l ,m

A
s .

Application of this procedure gives the following result:

j1
2
1
2
i ¼

ffiffi
2
3

q
j1;�1

2
i � 1ffiffi

3
p j0; 1

2
i;

j1
2
� 1

2
i ¼ �

ffiffi
2
3

q
j � 1; 1

2
i þ 1ffiffi

3
p j0;�1

2
i:

ð24Þ

At this point we need to establish the correspondence between

these states and the pseudo-spin-1/2 states |tA = 1
2
, sA = �1

2
i,

where tA = 1
2
and sA = �1

2
are the quantum numbers of the

pseudo-spin and its projection, respectively. Let us define the

effective Zeeman Hamiltonian for the ion A. This Hamiltonian

acts within the Kramers doublet space and has the form

Ĥeff
Z (A) = bgeffŝAH, (25)

where geff is the effective g-factor for the Kramers doublet and

H is the magnetic field. Comparing the matrix of the initial

Zeeman Hamiltonian b(geŝA–klÂ)H with that of Ĥeff
Z and

demanding geff to be positive we arrive at the conclusion that

this requirement can be fulfilled only if |tA = 1
2
, sA = 1

2
i

corresponds to |jA = 1/2, mA
j = �1/2i and |tA = 1

2
, sA = 1

2
i

corresponds to |jA = �1/2, mA
j = 1/2i. For this correspondence

one finds:

geff = 1
3
(ge + 4k). (26)

Let us calculate the matrix of the orbitally-dependent

exchange Hamiltonian, eqn (8), within the truncated basis of

the Kramers doublet, eqn (24). Simple calculations show that

within this basis the matrix l2̂ZA coincides with the 2
3
ÎA matrix,

where ÎA is the unit matrix. We also find that the matrix lˆ2ZAŝZA

coincides with the 2
3
t̂AZ matrix, where t̂AZ is the Z component of

the pseudo-spin-1/2 matrix

t̂AZ ¼
1=2 0
0 �1=2

� �
ð27Þ

defined in the basis |tA = 1
2
, sA = 1

2
i, |tA = 1

2
, sA = �1

2
i.

Finally we obtain the result that all matrix elements of the

operators l2̂ZAŝXA
and l2̂ZAŝYA

are vanishing within the Kramers

doublet space. So, upon the projection on the ground manifold

G7(t
5
2g) # 2B2g(e

4
gb

1
2g) the initial exchange Hamiltonian,

eqn (16), is reduced to the pseudo-spin-1/2 Hamiltonian

having an Ising form

Ĥeff
ex = �2JJ t̂AZ ŝBZ, (28)

where the effective exchange parameter takes the

following form:

Jjj ¼
1

3

t2p
U � K

� t2p
U þ K

� �
: ð29Þ

In eqn (28) the term proportional to the unit matrix is omitted.

It follows from eqn (28) that JJ 4 0, so the exchange

interaction in this case is ferromagnetic in compliance with

the Goodenough–Kanamori rules.86 In fact, the p-type
electron transfer occurs from the doubly occupied orbital

of the ion B to the single-occupied orbital of the ion A

(Section 4.1) and in accord with the Goodenough–Kanamori

rules, such a kind of transfer produces a ferromagnetic

exchange splitting.

Finally, it should be emphasized that in the present case the

strong uniaxial Ising type anisotropy is a direct consequence of

the orbitally-dependent exchange because both constituent

metal ions are fully isotropic (no single-ion anisotropy exists).

As other example illustrating the idea of the pseudo-spin-1/2

Hamiltonian approach we will reconsider now the aforenamed

case of the 2Eg(e
1
g) #

2B2g(b
1
2g)-problem (Section 4.2) taking

into account the SO splitting of the tetragonal 2Eg(e
1
g)-term.

Since the basis functions for the Eg-term on the center A

correspond tomA
l =�1 the transverse part -kl(lX̂A

ŝXA
+ lŶA

ŝYA
)

of the SO coupling operator is not operative within the
2Eg-term. For this reason the effective SO coupling operator

is reduced to the axial form:

ĤSO(
2Eg) = �kllẐAŝZA

, (30)

where the SO coupling parameter l is positive (less than half-

filled eg-shell). This interaction splits the 2Eg-term into two

Kramers doublets G7(m
A
l = �1, mA

s = �1
2
) and G6(m

A
l = �1,

mA
s = 81

2
) with the G7 state being the ground one and the

levels G7 and G6 being separated by the gap kl (Fig. 13). When

this gap significantly exceeds the exchange splitting and the

temperature is too low to populate the excited Kramers

doublet, one arrives at the pseudo-spin-1/2 Hamiltonian

formalism in which the initial 2Eg(e
1
g) #

2B2g(b
1
2g) exchange

problem is reduced to the G7(e
1
g) # 2B2g(b

1
2g) problem

(Fig. 13), and the Kramers doublet G7 is regarded as a

pseudo-spin-1/2 state.

In order to establish the correspondence between the

wave-functions |mA
l = �1, mA

s = �1
2
i and the components

|sA = �1
2
i of the pseudo-spin-1/2 we will introduce the

effective Zeeman operator for the Kramers doublet ion A

and calculate the principal values of the effective g-tensor. Due

to the tetragonal symmetry on the center A this operator has

the form

Ĥeff
Z (A) = b[gJ t̂

A
ZHZ +g>(t̂AXHX + t̂AYHY)], (31)

where gJ and g> are the principal values of the local effective

g-tensor of the center A. To find the principal values of the

effective g-tensor one has to compare the matrix elements of

this operator with the matrix of the initial Zeeman operator

Ĥz(A) = b(geŝA–klÂ)H acting within the basis |mA
l = �1,

mA
s = �1/2i. All matrix elements of the operators ŝAX, ŝ

A
Y,

lÂX and lÂY vanish within this basis, so one immediately finds

that g> = 0. On the other hand by setting ge = 2 one can find

hmA
l = �1, mA

s = �1/2|b(2sAZ – klÂZ)

Hz|m
A
l = �1, mA

s = �1/2i = �b(1�k)Hz, (32)

Fig. 13 Effective pseudo-spin-1/2 interaction in the G7(e
1
g) #

2B2g(b
1
2g)-pair.
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Since hsA = �1/2|Ĥeff
Z (A)|sA = �1/2i = �1

2
bgJHz, gJ =

2(1�k) is positive (note that k o 1) provided that the state

|mA
l = 1, mA

s = 1
2
i corresponds to |sA = 1

2
i and the state

|mA
l = �1, mA

s = �1
2
i to |sA = �1

2
i. Since the orbital

reduction factor is close to 1, the value gJ is small due to

mutual canceling of the orbital and spin contributions, so we

come to the conclusion that the ion A is weakly magnetic at

low temperatures.

Let us evaluate now the matrix of the pseudo-Heisenberg

exchange Hamiltonian, eqn (12), within the |mA
l = �1,

mA
s = �1

2
i basis. It is seen that

hmA
l = �1, mA

s = �1
2|ŝZA

|mA
l = �1, mA

s = �1
2i = �1

2,(33)

while all matrix elements of the operators ŝXA and ŝYA are

vanishing within this basis. Then projecting the initial

exchange Hamiltonian, eqn (20), on the G7(e
1
g) # 2B2g(b

1
2g)

manifold and omitting the term proportional to the unit

matrix we obtain the pseudo-spin-1/2 Hamiltonian of the Ising

form in which the JJ parameter is given by

Jjj ¼
1

2

t2p
U � K

� t2p
U þ K

� �
: ð34Þ

The effective exchange proves to be ferromagnetic (JJ 4 0) in

accordance with the Goodenough–Kanamori rules86 since the

p-type electron transfer in this case occurs from the single

occupied orbital of the ion A to the empty orbital of the ion B

(Section 4.2).

The obtained result can be regarded as a part of a more

common rule according to which, if the initial exchange

interaction involving the axially anisotropic metal ions (for

example those with the ground tetragonal E-terms) is of the

isotropic pseudo-Heisenberg form, the effective pseudo-spin-1/2

Hamiltonian for the ground Kramers doublets takes on the

fully anisotropic Ising form. Note, that as distinguished from

the previous example, this anisotropy cannot be regarded as

exchange anisotropy since the exchange itself is fully isotropic

in accordance with eqn (20). Indeed, in spite of the fact that it

appears as anisotropy of the effective pseudo-spin-1/2

exchange, such anisotropy is to be related to the single-ion

rather than to the exchange.

Finally, let us briefly discuss the case when the exchange

interaction between isotropic orbitally-degenerate ions is

described by the pseudo-Heisenberg Hamiltonian Ĥex =

�2JŝAŝB in which ŝA and ŝB are the true spin operators. This

is, for instance, the case of two octahedrally coordinated high-

spin CoII ions provided that the dominating electron transfer

links the orbitally nondegenerate e2g(
3A2g)-subshells of two

cobalt ions. The 4T1g term of i-th CoII ion (i = A, B) can be

regarded as the state with fictitious angular momentum li = 1.

This orbital angular momentum is coupled with the true spin

si = 3/2 by the SO coupling:

Ĥi
SO = �(3/2)kllîŝi, (35)

where l E �180 cm�1 5 is the SO coupling parameter for the

CoII ion. The SO coupling splits the ground 4T1g term into the

following states characterized by the total angular momentum

ji: ground Kramers doublet ji = 1/2(G6), quartet ji = 3/2(G8)

and sextet ji = 5/2(G7 + G8) with the energies (15/4)kl,
(3/2)kl and �(9/4)kl, respectively. Applying the above

described procedure one finds the following interrelationship

between the operator ŝi defined in the Kramers-doublet basis

and the spin-1/2 operator ŝi:
102

ŝi = (5/3)ŝi. (36)

Then projecting the initial pseudo-Heisenberg Hamiltonian

Ĥex = �2JŝAŝB onto the ground G6(t
5
2ge

2
g) # G6(t

5
2ge

2
g) manifold

we arrive at the following pseudo-spin-1/2 Hamiltonian:

Ĥeff
ex = �(50/9)JŝAŝB. (37)

The Hamiltonian, eqn (37), is of the HDVV form and fully

isotropic in accordance with the fact that in this case

both single-ion and exchange anisotropic contributions are

vanishing.

5. Applications of the concepts of the

orbitally-dependent exchange and pseudospin-1/2

Hamiltonian

5.1 Orbitally-dependent exchange and magnetic anisotropy in

[Ti2Cl9]
3�

In this section we will consider the properties of some

molecular systems exhibiting orbital degeneracy and show

how the unquenched orbital angular momentum manifests

itself in their properties. In some cases we will use the model

examples so far discussed and show how the simple models can

work to give a qualitative picture in more complex situations.

Fig. 14 Molecular structure of the [Ti2Cl9]
3� unit. Cartesian cubic and trigonal frames for a face-shared binuclear system: local cubic frames (a),

local trigonal frames for the sites A (b) and B (c). Adapted from ref. 92.
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The TiIII ions are located in well isolated face-shared dimers

of D3h symmetry (Fig. 14) in the crystal structure of Cs3Ti2Cl9
and Cs3Ti2Br9 (see ref. 5 and refs. therein). The magnetic and

spectroscopic properties of these systems were debated for

almost two decades.92,123–125 The ground cubic term of the

TiIII ion is 2T2g(t
1
2g), so, in the case of perfect octahedral ligand

surroundings of the TiIII ions, we face a 2T2g(t
1
2g) #

2T2g(t
1
2g)

exchange problem in a pair of D3h symmetry.

The temperature dependence of wJ and w> measured in

ref. 126 (Fig. 15) indicates that the low-temperature magnetic

susceptibility is small and strongly anisotropic with w> 4 wJ.
This significant magnetic anisotropy indicates the importance

of the orbital interactions. A remarkable feature of the experi-

mental data is that the magnetic anisotropy decreases with the

increase of temperature. Both wJ and w> decrease when the

samples cool down and they become temperature independent

at To 100 K. These data clearly indicate that the ground state

of the pair is non-magnetic.

The idealized molecular structure of [Ti2Cl9]
3�and the local

coordinate frames associated with the metal sites are shown in

Fig. 14. It is convenient to introduce the trigonal local

coordinates XA,YA,ZA and XB,YB,ZB with ZA(ZB) axes

directed along the C3 axis. In Fig. 14 these frames are shown

together with the cubic ones (xA,yA,zA and xB,yB,zB). The

molecular frame is chosen to coincide with the local trigonal

frame XA,YA,ZA. The real trigonal forms of t2 orbitals on each

metal center are defined by

a2 ¼ dZ2 ;

y2 ¼ ð1
ffiffiffi
3
p
Þð�dXZ þ

ffiffiffi
2
p

dX2�Y2Þ;

e2 ¼ ð1
ffiffiffi
3
p
Þð�dYZ �

ffiffiffi
2
p

dXY Þ:

ð38Þ

These orbitals refer to the local trigonal Xi,Yi,Zi (i = A,B)

frames; the index i is omitted in eqn (38). It should be

emphasized that the TiCl6 octahedra are slightly distorted

along the trigonal axis resulting in the splitting of the ground
2T2g term of the TiIII ion into the orbital singlet 2A1 and the

orbital doublet 2E, with the orbital singlet 2A1 being the

ground term. We will denote the energy gap 2A1 � 2E due

to the local trigonal crystal field as Dtrig. As a result of the

lowering of the site symmetry from O to C3v, the a2-orbital

becomes the a1-type orbital while the orbitals y2 and e2 prove
to be the e-type orbitals. While considering the kinetic

exchange in [Ti2Cl9]
3�one should take into account that in

trigonal symmetry there are the following two non-vanishing

transfer integrals:

t(aA2 ,a
B
2 ) � ta (a1–a1—transfer process), (39)

t(yA2 ,y
B
2 ) = t(eA2 ,e

B
2 ) � te (e–e—transfer process).

The trigonal crystal field splits the ground manifold 2T2g(t
1
2g)

# 2T2g(t
1
2g) into the following groups of states: (i) the lowest in

energy group (2A1)A# (2A1)B (abbreviated as a# a-group) that

appears as a result of the exchange splitting of the ground

multiplet of two non-interacting TiIII ions; (ii) the first excited

group (2A1)A # (2E)B, (
2E)A # (2A1)B (a# e-group) that arises

from the multiplet with the energy Dtrig; and (iii) the highest in

energy group of states (2E)A # (2E)B (e# e-group) arising from

the multiplet with the energy 2Dtrig. Along with the kinetic

exchange and the trigonal crystal field term, the full Hamiltonian

of the dimer also includes the SO coupling and Zeeman terms.

The energies of the CT states are defined by the Racah

parameters of the TiII ion. In ref. 92 the values of the Racah

parameters obtained for the free TiII ion have been used:

A = 141 000 cm�1, B = 900 cm�1, C = 3300 cm�1 (these

values are close to those found in the cubic crystal field).87 The

parameter A plays the same role as the charge transfer energy

U in Anderson’s theory of the kinetic exchange. The value

l = 155 cm�1 was also used, which is the value of the SO

coupling constant for the free TiIII ion.5

Some remarks concerning the relative values of the transfer

parameters ta and te are now in order. First, the results of the

extended Hückel calculations124 demonstrated that t2a c t2e
and te and ta are of opposite signs. This result is consistent with

the fact that the ta transfer corresponds to the strong (due to

the short intermetallic distance) through-space s-interaction
(Fig. 16), while the te transfer is responsible for a more weak

interaction through the ligands. The conclusion about strong

difference in the magnitudes of te and ta has been confirmed by

Fig. 15 Comparison between the experimental wJ vs. T and w> vs. T

curves measured for the [Ti2Cl9]
3� unit (dots)126 and the theoretical

curves (solid lines)92 calculated with A = 141000 cm�1, B = 900 cm�1,

C = 3300 cm�1, l = 155 cm�1, ta = �5208 cm�1, te = �0.154ta,
Dtrig = 320 cm�1, and k = 0.71. Adapted from ref. 92.

Fig. 16 Overlap scheme associated with the ta transfer.
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the ab initio calculation results in ref. 125. The ratio ta/te was

roughly estimated as ta/te E �6.5. This corresponds to the

ratio te/ta E �0.154 which was used in the best fit procedure.

Finally, three parameters ta, Dtrig and k were varied in

course of fitting of the magnetic data, with Dtrig being positive

as described above. The parameter k represents the orbital

reduction factor that is involved in the SO-coupling term

and orbital Zeeman term. The best fit was achieved for

ta = �5208 cm�1, Dtrig = �320 cm�1 and k = 0.71.

The wJ vs. T and w> vs. T curves calculated with this set of

parameters are shown in Fig. 15 along with the experimental

data. One can see that the theoretical curve for w> is in a good

agreement with the experimental data in the low-temperature

region (below 170 K). The calculated wJ at low temperatures is

also in satisfactory agreement with the experimental values. It

is also remarkable that the theory well reproduces the slopes of

wJ and w>. Finally, it is seen that, in agreement with the

experimental data, the calculated magnetic anisotropy remains

constant below 100 K and decreases with the increase of T in

the high-temperature region (T 4 150 K).

Fig. 17 shows the energy scheme calculated (without

spin-orbital splitting) for this system. The ground state is
1A01, and the first excited state 3A002 is separated by about

704 cm�1 from the ground one (a � a-group). The next four

orbital doublets 3E00, 1E00, 3E0, and 1E0 (a � e-manifold) fill the

gap E134 cm�1. This group of levels is close to the level 3A002.

Finally, the e � e-group of levels forms a narrow band that is

about 1340 cm�1 higher than the ground 1A01 level. It should

be mentioned that the trigonal crystal field splitting is

relatively small and the exchange mixing of the two 1A01 states

arising from a � a and e � e-multiplets is significant. This

produces a strong stabilization of the diamagnetic ground

level 1A01 and can be considered as a manifestation of the

orbital effects. Inspection of this energy pattern allows us to

qualitatively explain the observed magnetic behavior of the

[Ti2Cl9]
3� unit, at least at low temperatures. First, the ground

state is the orbital and spin singlet 1A01 and in the absence of

SO coupling there is no Zeeman mixing of this state with the

excited ones in the parallel field (along C3 axis). As a

consequence, in parallel field both the first order Zeeman

splitting and the TIP contribution vanish in the ground state

and therefore (wJ)T-0 = 0. At the same time, (w>)T-0 appears

as a second order effect due to the mixing of the ground 1A01
term with the orbital doublets 1E0 and 1E00. The inclusion of

the SO coupling leads to a small admixture of the magnetic

states to the ground diamagnetic level resulting thus in the

nonvanishing value of (wJ)T-0.

The above analysis shows that the adequate description of

the magnetic anisotropy of the [Ti2Cl9]
3� unit requires a

careful consideration of the orbital contribution. More

detailed discussion of different rival models and approaches

aimed to explain different aspects of the magnetic behavior of

this system can be found in ref. 97 (see also references therein).

5.2. Orbitally-dependent exchange in rare-earth compounds

Cs3Yb2Cl9 and Cs3Yb2Br9. Origin of its surprising isotropy

Most of the rare earth based compounds exhibit a very strong

magnetic anisotropy that manifests itself both in local para-

meters (anisotropy of g-tensor) and in the anisotropy of the

exchange.127–131 A large amount of experimental data,132–134

in conjunction with the clear physical concept about the role of

the orbital angular momentum, led to a firm conviction that

strong exchange anisotropy is an inherent and common

property of the rare earth systems with unquenched orbital

angular momenta. However, the rare-earth compounds

Cs3Yb2Cl9 and Cs3Yb2Br9, which are formed by pairs of

YbCl6 octahedra sharing a face (D3h symmetry), seem to be

an exception from this general rule. In fact, the INS experiments

of Güdel et al.135 showed that the exchange interaction

between YbIII ions in these compounds seems to be isotropic

and can be described by the Heisenberg type Hamiltonian

acting within the lowest Kramers doublets of YbIII ions.

Conversely, a significant exchange anisotropy arising from

the orbital degeneracy was found in numerous other systems

including the isostructural compounds Cs3Ho2Br9
134 and

YbCrBr9.
131 An attempt to understand the origin of this

isotropy was made in ref. 136 where the effective-pseudo-

spin-1/2 Hamiltonian describing the kinetic exchange between

two octahedrally coordinated YbIII ions in their ground

Kramers doublet states have been deduced. The Hamiltonian

derived in ref. 136 is expressed in terms of the operators

defined with respect to the local frames, hence, it does not

give a clear answer about the character of the exchange

anisotropy (or isotropy). For this reason here we will mainly

follow ref. 136 but the Hamiltonian will be expressed in terms

of operators defined with respect to the molecular frame.

Since the local anisotropy (anisotropy of g-tensors of the

constituent YbIII ions) is weak in the systems under study, one

can neglect the weak trigonal components of the crystal field

and consider the idealized system built from two perfect

octahedral YbIII sites like in [Ti2Cl9]
3� unit. The SO coupling

in rare-earth ions is strong as compared to crystal field and
Fig. 17 Calculated energy pattern of the [Ti2Cl9]

3� unit. Adapted

from ref. 92.
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stabilizes the 2F7/2 term (L = 3, S = 1/2) as the ground state of

YbIII. The cubic crystal field splits the ground term 2F7/2 of YbIII

ions into twoKramers doubletsG6 and G7 and a quadrupletG8 in

such a way that the Kramers doublet G6 proves to be the ground

state (Fig. 18). Since the energy gap between the ground and

excited states was shown to exceed considerably the exchange

interaction,135 one arrives at the G6 # G6 exchange problem as

schematically shown in Fig. 18.

Considering symmetry adapted combinations of the

spherical harmonics Y4m(y,j) one can build the wave-

functions of the Kramers doublet from the 2F7/2 manifold.

Nevertheless, there is a more appropriate way to treat the

problem of the magnetic exchange. Let us note that the

4f-atomic level is split in the cubic crystal field into two

triplets, T1 and T2, and a singlet, A2. Simple group–theoretical

arguments show that G6 arises only from T1 orbital triplet

when the last is coupled to the spin state with S = 1/2 (G6).

This means that only T1-states contribute to the ground

Kramers doublets.

The mechanism of the kinetic exchange between the lantha-

nide ions was proposed by Goodenough.86 This mechanism

deals with the electron transfer from the 4f-orbital of one rare-

earth ion to the 5d-orbital of another one. Now along with the

4f-orbitals of T1-type we have to use the 5d-orbitals that form

the bases of T2 and E irreducible representations in O-group.

Within a simplified model of the CT states the intraionic

Coulomb repulsion between 4f and 5d electrons is

approximated by one parameter Ufd that is assumed to include

the spherical term F0(4f,5d) and the energy difference Dfd

between 4f and 5d orbitals. The intra-center exchange is

approximated by the only exchange integral Jfd E G1(4f,5d).

This exchange discriminates the energies of spin triplets and

spin singlets; the corresponding energy gap is equal to Jfd. In

addition, the cubic crystal field splitting of the 5d levels, which

is of the order of 10 Dq E 2–3 eV, is taken into account.

The 4f 2 5d electron transfer mixes the ground

configuration (4f135d0)A–(4f
135d0)B(g) with the two CT excited

ones (4f135d1)A–(4f
125d0)B and (4f125d0)A–(4f

135d1)B (e).

It is reasonable to simplify the calculation taking

into account only the strongest through-space direct s–s
(4f 2 5d) interaction involving the fa1-orbital of one center

and the da2 orbital of the second center:

ta ¼ hfAa1 jĤtrjdBa2 i ¼ hf
B
a1
jĤtrjdAa2i; ð40Þ

where fa1 is the real trigonal t1-type 4f-orbital having the

form

fa1 ¼ 5
6
ffiffi
2
p fX3 � 2

3
fZ3 þ

ffiffi
5
p

2
ffiffi
6
p fXðY2�Z2Þ; ð41Þ

and da2 is the real trigonal t2-type 5d-orbital given by eqn (38).

Within the adopted approximations the energies of the CT

spin-triplets and spin-singlets will be Ufd � Jfd � 4Dq= Ũfd �
Jfd and Ufd + Jfd � 4Dq = Ũfd + Jfd, respectively, where

Ũfd = Ufd � 4Dq is an effective Coulomb repulsion energy

that takes into account the stabilization of the CT states due to

the cubic crystal field splitting. Using the explicit expression

for the matrix elements of the one-electron 4fA - 5dB transfer

operator connecting the ground and the CT states one finds

the form Ĥeff
ex = �2JŝAŝB for the pseudo-spin-1/2 Hamiltonian

in which ŝA and ŝB operators are defined in the molecular

frame that is chosen to coincide with the local trigonal

XA,YA,ZA frame (Fig. 14), and

J ¼ t2a
9ð ~Ufd þ JfdÞ

� t2a
9ð ~Ufd � JfdÞ

: ð42Þ

One can see that the interaction between two YbIII ions in their

Kramers doublet states is antiferromagnetic (J o 0) and can

be described by the isotropic HDVV Hamiltonian. These

findings are in accordance with experimental data obtained

in the INS study.135

5.3 A model for the spin-canted antiferromagnetic single-chain

magnet Co(H2L)(H2O) (L = 4-Me–C6H4–CH2N(CPO3H2)2)

In this section the importance of orbital contributions in the

CoII diphosphonate Co(H2L)(H2O) chain compound will be

demonstrated. This compound synthesized and magnetically

characterized in ref. 137 is of interest for the following reasons:

(i) it represents a SCM, the 1D system that behaves like a bulk

magnet; (ii) this is a rare example of antiferromagnetic chain

showing such a behavior; (iii) finally, in view of the topic of

this review, this system is composed of the high-spin CoII ions,

which possess unquenched orbital angular momenta.

A slow relaxation of magnetization in SCMs appears due

to the exchange interaction between fast relaxing units. A

theoretical background for the description of SCM behavior

is provided by Glauber’s stochastic approach.138 It was

predicted a slow relaxation of the magnetization for a chain

composed of ferromagnetically coupled Ising type spins 1/2. In

Glauber’s theory the thermal variation of the relaxation time t
is described by the Arrhenius low

tðTÞ ¼ t0 exp
Db

kBT

� �
; ð43Þ

in which the barrier Db for the reversal of magnetization

represents the energy loss in a single spin flip-flop process,

that is Db = 2J.

An Ising type spin chain can apparently behave as a SCM

only if the constituent magnetic units are coupled in such a

way that their magnetic moments are not compensated. In

majority of known SCMs this condition is satisfied either due

to a ferromagnetic interaction between the same spins or due

to alternation of different antiferromagnetically coupled spins.

Therefore a recently reported example of SCM composed of

Fig. 18 Cubic crystal field splitting of the ground 2F7/2 multiplet

of the YbIII ion and schematic image of the G6 # G6 exchange

problem.
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antiferromagnetically coupled metal ions of the same kind137

seems to be quite unusual. In this system the CoII ions are

linked through the bridging phosphonate oxygen atom to

create a 1D chain of corner-shared octahedra which propagate

in a zigzag fashion (Fig. 19). A quantum-mechanical approach

to the description of the SCM behavior in this compound has

been developed in ref. 118. It was demonstrated that the

uncompensated magnetic moment at low temperatures is a

result of the noncollinear spin structure (spin canting). In fact,

the crystallographic positions of neighboring CoII ions in the

chain are inequivalent because the corresponding ligand

octahedra are rotated with respect to each other;137 precisely

this situation results in a spin canting. At the same time the

two cobalt centers in the chain have identical environments

and are linked to five oxygen and one nitrogen atoms.

As pointed out before, the ground state of the high-spin CoII

ion in an ideal octahedral surrounding can be represented with

a good accuracy by the only configuration t52ge
2
g that gives rise

to the orbital triplet 4T1g(t
5
2ge

2
g) possessing fictitious orbital

angular momentum l = 1. From the structure of the

compound one observes that the nearest octahedral surroundings

of the CoII ions are strongly tetragonally distorted. Let us

assign the indices A and B to two octahedrally coordinated

CoII ions which occupy inequivalent crystallographic positions

in a 1D chain. Then, one has to introduce two local frames of

reference (Fig. 20) relating to ions A and B in the chain. We

assume that the tetragonal local ZA and ZB axes subtend an

angle j, the YA and YB axes are chosen to be parallel to each

other and perpendicular to ZAZB-plane, while the axes XA and

XB lie in the ZAZB-plane. The B center system axes can be

obtained from the A center system axes by the j degree turn

around YA or YB axis. Along with the local frames, we will

also use the molecular coordinates chosen in such a way that

the molecular Z axis is directed along the bisector of the angle

j formed by the local ZA and ZB axes while the Y axis of the

molecular system coincides with the local YA and YB axes as

shown in Fig. 20.

The tetragonal component of the ligand field splits the

ground 4T1g term of each CoII ion into the orbital singlet
4A2g(ml = 0) and the orbital doublet 4Eg(ml = �1). Depending

on the sign of the tetragonal crystal field, either the orbital

singlet or the orbital doublet can become the ground state.

However, as was demonstrated in ref. 118 only the ground

orbital doublet 4Eg(ml = �1) is compatible with the SCM

behavior of the system under consideration.

A reasonable assumption that directly follows from the

overall symmetry of the corner-shared bioctahedral unit is

that the only transfer pathway significantly contributing to the

kinetic exchange is that associated with 3Z2
A–r

2
A and 3Z2

B–r
2
B

-orbitals, which are directed towards the bridging oxygen

ligand and thus can efficiently overlap. The orbital scheme

illustrating the kinetic exchange in the CoII pair is shown in

Fig. 21. It is seen that, in the case under consideration, we are

Fig. 19 (a) ORTEP representation of the Co(H2L)(H2O) unit. The

thermal ellipsoids are drawn at the 50% probability level. (b) An

extension of the view in (a) looking down the c-axis to emphasize the

zig-zag chain structure. The Co, P, N, O atoms are shaded in pink,

green, blue and red respectively. Adapted from ref. 118.

Fig. 20 Local and molecular frames. Adapted from ref. 92.

Fig. 21 Orbital scheme showing the kinetic exchange mechanism for

two CoII ions occupying tetragonally distorted octahedral positions.

Only one of four microstates belonging to the ground manifold is

shown (b2g p XY, yA p YZ, eA p XZ, b1g p X2–Y2, a1g p 3Z2�r2).
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dealing with the electron transfer between the orbitally non-

degenerate orbitals aA1g and aB1g, and hence, according to the

rule established in Section 4.2 the kinetic exchange can be

described by the isotropic pseudo-Heisenberg Hamiltonian

Ĥex = �2JŝAŝB. Assuming that the splitting caused by the

tetragonal ligand field considerably exceeds the SO splitting

(axial limit) and neglecting the SO mixing of the 4Eg and
4A2g

terms one arrives at the scheme of the low-lying energy levels

of the CoII ion as shown in Fig. 22. Within the ground 4Eg

term the SO interaction takes on the axial form

ĤSO(
4Eg) = �(3/2) kllẐŝZ. (44)

The SO coupling leads to the splitting of the 4Eg term into four

equidistant Kramers doublets, with the doublet possessing

ml = �1, ms = 83/2 being the ground one (Fig. 22). The

SO splitting considerably exceeds the exchange interaction in

the Co(H2L)(H2O) unit and hence the pseudo-spin-1/2

Hamiltonian formalism for the ground Kramers doublet is a

well justified approximation. To define this Hamiltonian let us

first present the isotropic pseudo-Heisenberg Hamiltonian in

the form

Ĥex = �2J[ŝX(A)ŝX(B) + ŝY(A)ŝY(B) + ŝZ(A)ŝZ(B)], (45)

where the single ion spin operators ŝg(A) and ŝg(B)

(g = X,Y,Z) refer to the molecular frame. Then one should

pass from the operators ŝg(A), ŝg(B) to the operators ŝgA, ŝgB
defined in the local coordinates. Performing this transformation

with the aid of the rotation matrices one obtains:

Ĥex = �2J[ŝYA
ŝYB

+ cos(j)(ŝXA
ŝXB

+ ŝZA
ŝZB

)

� sin(j)(ŝXA
ŝZB

–ŝZA
ŝXB

)]. (46)

All matrix elements of the operators ŝXA
, ŝYA

, ŝXB
and ŝYB

are

vanishing within the ground Kramers doublet and hence the

initial pseudo-Heisenberg Hamiltonian is reduced to the

Ising form

Ĥeff
ex = �2Jeff t̂ZA

t̂ZB
, (47)

where t̂ZA
, t̂ZB

are the pseudo-spin-1/2 operators, and the

effective exchange parameter is

Jeff ¼ 9J cosðjÞ 1� J cosðjÞ
3kjlj

� �
: ð48Þ

The pseudo-spin-1/2 basis is chosen in such a way that

the components of the ground Kramers doublet level with

ml = �1, ms = 3/2 (ml = 1, ms = �3/2) corresponds to the

projection s = 1/2 (s = �1/2) of the pseudo-spin-1/2. As a

result, the effective single ion pseudo-spin-1/2 Hamiltonian is

found to be:117

Ĥ
eff

i ¼ gjjbt̂ZiHZi � L?ðH2
Xi
þH2

Yi
Þ; i ¼ A;B; ð49Þ

where gJ = 3(k + ge), g> = 0 are the principal values of the

g-tensor for the CoII ion, and LJ = 0, L> = g2eb
2/2k|l| are the

principal values of the tensor of the TIP. The TIP contribution

appears as a result of the Zeeman mixing of the ground

Kramers doublet with the three lowest excited states.

Using these results one can write down the following total

Hamiltonian for a chain including exchange interaction

between nearest neighboring CoII ions and Zeeman terms

(excluding TIP):

Ĥ
eff ¼ � 2Jeff

X
i

f½t̂ZA
ðiÞt̂ZB

ðiÞ þ t̂ZB
ðiÞtZA

ði þ 1Þ�g

þ gjjb½t̂ZA
ðiÞHZA

þ t̂ZB
ðiÞHZB

�g;
ð50Þ

where index i numbers the AB pairs. In eqn (42) both the spin

operators and the components of the magnetic field are defined

in the local frames.

It is to be noted that the Ising form of the effective

Hamiltonian is only valid if the pseudo-spin-1/2 operators

are defined in the local frames. In the molecular frame

the exchange Hamiltonian does not retain the Ising form.

Nevertheless formal similarity between the Hamiltonian,

eqn (50), and true Ising Hamiltonian provides a straight-

forward way to find the interrelation between the height of

the magnetic barrier and the exchange parameter. Let us

consider, for example, a single spin flip-flop process in the

absence of the magnetic field, for which one spin (let us say,

the spin of the center B in the first AB pair) is overturned

Fig. 22 Splitting of the ground tetragonal 4E term by the SO

coupling.

Fig. 23 Noncollinear spin structure of the chain and illustration for a

spin flip-flop process. Adapted from ref. 92.
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(Fig. 23). It follows from eqn (50) that the energy loss in such a

process can be calculated as

Db = E[sA(1) = �1
2
, sB(1) = 81

2
, sA(2) = �1

2
, sB(2)

= 81
2
, sA(3) = �1

2
, sB(3) = 81

2
,. . .,] �E[sA(1)

= �1
2
, sB(1) = �1

2
, sA(2) = �1

2
, sB(2) = 81

2
, sA(3)

= �1
2
, sB(3) = 81

2
,. . .] = 2|Jeff|, (51)

where all spin-projections are defined in the local frames. One

thus obtains the same relation as that derived from the true

Ising Hamiltonian. An analytical solution for the magnetic

susceptibility of a chain described by this effective

Hamiltonian, eqn (50), can be derived. The details of this

calculation can be found in ref. 118.

The temperature dependence of the relaxation time for the

Co(H2L)(H2O) compound can be obtained from the frequency

dependence of the in-phase (w0) and out-of-phase (w00) ac

susceptibility. The experimental and calculated ln(1/t) vs.

1/T dependences are shown in Fig. 24. The best fit parameters

were found to be Db(w0) = 18.6 cm�1, t0(w0) = 3.4 � 10�9 s for

the in-phase signal of frequency-scan and Db(w00) = 20.2 cm�1,

t0(w00) = 8.4� 10�10 s for the out-of-phase signal, respectively.

Then, considering a simple average Db = [Db(w0) + Db(w00)]/2
= 19.4 cm�1 as a reasonable value of the barrier height one

finds from eqn (51) that Jeff = �9.7 cm�1.

Magnetic susceptibility measurements performed on a poly-

crystalline sample of the compound at the fieldH= 0.1 T over

the temperature range 2–50 K (Fig. 25) gave the wT vs. T curve

that is quite similar to that observed in the ferrimagnetic spin

chains. As the temperature is lowered, the wT value decreases

and reaches a minimum of 0.6 emu K mol�1 at 7 K. Below

7 K, the wT increases abruptly to reach a maximum atB2.5 K

(wTmax = 2.5 emu mol�1 K) and finally decreases again at

lower temperatures. The observed increase of wT below 7 K

can be obviously explained by the fact that antiferromagnetic

exchange does not lead to perfect cancellation of spins due to

spin canting. In the calculation of wT it is reasonable to use the

values l = �180 cm�1, k = 0.8 that are typical for the

high-spin CoII ion, and the effective exchange parameter value

Jeff = �9.7 cm�1 obtained from the Arrhenius plot. The angle

j between the easy anisotropy axes of A and B ions

are allowed to be changed in course of the fitting to the

experimental wT vs. T curve. The best fit is achieved for the

angle j = 151. Fig. 25 shows a close agreement between the

observed and calculated wT vs. T curves, thus indicating that

the theory adequately describes both dynamic and static

magnetic properties of the compound.

5.4 Pseudo-spin-1/2 Hamiltonian approach for the trigonal

bipyramidal cyano-bridged Ni
II
3Os

III
2 complex

Recently the synthesis and magnetic properties of a new

complex {[NiII(tmphen)2]3[OsIII(CN)6]2}�6CH3CN (OsIII2NiII3
cluster) with a pentanuclear trigonal bipyramidal structure139

(Fig. 26) has been reported. The ground state of the NiII ion in

the octahedral surrounding of the N-bound cyanide ligands is

the orbital singlet 3A2g(t
6
2ge

2
g). A strong cubic crystal field

induced by six C-bound cyanides gives rise to the triply

degenerate ground term 2T2g(t
5
2g) for the OsIII ion that is the

state with l = 1. Each OsIII ion in this cluster is magnetically

coupled with three MnII ions via the superexchange mediated

by the cyanide bridges. The structure of this system is quite

similar to that previously reported for trigonal bipyramidal

cyano-bridged cluster [MnIII(CN)6]2[MnII(tmphen)2]3 (tmphen

= 4, 5, 7, 8-tetramethyl-1,10-phenanthroline), which contain

two orbitally degenerate low-spin MnIII ions coupled with

three orbitally non-degenerate MnII through magnetic

exchange140 (this system will be discussed later on). However,

in spite of their similarity, these two systems exhibit quite

different magnetic behavior. In fact, the MnIII2MnII3 cluster

was found to exhibit slow relaxation of the magnetization, a

property that is typical for SMMs. As distinguished from the

MnIII2MnII3 cluster the OsIII2NiII3 system does not show

SMM behavior. This remarkable observation can be under-

stood within a model developed for NiII3OsIII2, which takes

into account orbital degeneracy of the low-spin OsIII ions and

the complex molecular structure of this compound.120

The crystal structure analysis reveals that the NiII3OsIII2
cluster consists of two axial [Os(CN)6]

3� units connected via

bridging cyanide ligands to three equatorial [Ni(tmphen)2]
2+

moieties to yield a trigonal bipyramidal geometry (Fig. 26).

The Os–CN bond lengths and CN–Os–CN bond angles

exhibit nearly perfect octahedral symmetry of the [Os(CN)6]
3�

fragments. These fragments are not crystallographically

Fig. 24 Temperature dependence of the relaxation time. The triangles

and diamonds represent the relaxation time obtained from frequency

dependence of x0 and x00, respectively. The solid line corresponds to the

best fit of the data to the Arrhenius low. Adapted from Ref. 137.

Fig. 25 Temperature dependences of wT for Co(H2L)(H2O)

compound: triangles—experimental data reported in ref. 137, solid

line—theoretical curve calculated in ref. 118 with l = �180 cm�1,

k = 0.8, Jeff = �9.7 cm�1 and j = 15o. Adapted from ref. 118.
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equivalent, but an inspection of their coordination geometry

shows that OsIII centers are very similar and can be

described with one set of magnetic parameters to avoid over-

parametrization.

The model proposed in ref. 120 explicitly takes into account

the strong SO coupling acting within the 2T2g(t
5
2g) term of the

OsIII ion. The SO coupling splits this term into the Kramers

doublet G7 and quadruplet G8, with the doublet G7(�1/2)
being the ground state. Since the energy gap between the G7

and G8 levels for the osmium ions exceeds 5000 cm�1,141 the

ground G7 doublet of the OsIII ion is well separated from the

remaining part of the energy pattern. In this case, the exchange

Hamiltonian describing the low-lying levels includes pseudo-

spin-1/2 operators related to two OsIII ions and true spin-1

operators related to three NiII ions for which the orbital

contribution is very small. This Hamiltonian is expected to

describe the magnetic data for the NiII3OsIII2 cluster up to

room temperature.

The effective g-factor for the Kramers doublet G7(�1/2) of
the OsIII ion in an ideal octahedral ligand field is geff(Os) =

(ge + 4k)/3. The value k = 0.66 was obtained in ref. 141 by

fitting the magnetic data and electronic absorption spectra for

the free [Os(CN)6]
3� anion. This value of k gives geff (Os) = 1.55

which can be used in the calculations of the magnetic

susceptibility data for the NiII3OsIII2 cluster. In order to avoid

overparametrization, it is reasonable to take into account only

the magnetic anisotropy arising from the orbitally-dependent

exchange between OsIII and NiII ions and to neglect the less

important single-ion anisotropic contributions like zero-field

splitting of the spin levels of NiII ions and the anisotropy of the

g-factor for NiII ions (typical value of g(Ni) = 2.2).

There are two possible pathways for the electron transfer

processes between OsIII and NiII ions that contribute to the

overall kinetic exchange: (1) the tB2g - tA2g-transfer from the

double occupied x or Z-orbital of the NiII ion to the single

occupied x or Z-orbital of the OsIII ion through the bonding p
and antibonding p* orbitals of the cyanide ion (p-transfer
associated with the overlap scheme shown in Fig. 27);

(2) the eBg - eAg -transfer from the single occupied u orbital

of the NiII ion to the empty u orbital of the OsIII ion through

the s-orbitals of the cyanide bridge (s-transfer). These two

processes are shown in Fig. 28.

Let us first analyze the p-transfer contribution to the kinetic

exchange. Note that the G7(t
5
2g) # 3A2g(t

6
2ge

2
g) exchange

problem with the participation of p-transfer is quite similar

to the model system G7(t
5
2g) # 2B2g(e

4
gb

1
2g) examined in

Section 4.3. In fact, in both cases we are dealing with the

Kramers doublet state for the ion A, while the center B is

orbitally nondegenerate. For this reason the Ising form of the

effective exchange pseudo-spin-1/2 Hamiltonian that is found

for the G7(t
5
2g) #

2B2g(e
4
gb

1
2g)-problem is also valid when the

exchange between OsIII and NiII ions with the participation of

the p-transfer is considered. One thus can write the Ising

Fig. 26 Molecular structure of the Ni3Os2 complex with the numbering of metal ions: (a) a side view emphasizing the NiN6 and OsC6

coordination environments; the trigonal bipyramidal cluster core is highlighted with a hypothetical polyhedron; (b) a view along the axis of the

trigonal bipyramid emphasizing the approximately trigonal symmetry around each Os site. To allow for a better view of the cluster core, the

tmphen ligands are shown in the stick mode and the H atoms are omitted. Color scheme: Ni = green; Os = yellow; N= blue; C = gray. Adapted

from ref. 120.

Fig. 27 Scheme of overlap between t2 orbitals of OsIII and NiII

through the p orbitals of the cyanide bridge.

Fig. 28 Schemes of p and s-contributions to the kinetic exchange in

the OsIIINiII pair.
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Hamiltonian describing the p-contribution to the kinetic

exchange for each OsIIINiII pair in the cluster. For example,

for Os(1)–Ni(3) pair one obtains

Ĥeff
p (1,3) = �2JJ(p)t̂Z13

(1)ŝZ13
(3), (52)

where t̂Z13
(1) is the Z-component of the pseudo-spin-1/2

operator related to the ground Kramers doublet of the OsIII

ion, and ŝZ13
(3) represents the Z-component of the true spin

operator for the NiII ion (s3 = 1). These operators are defined

in the local frame of the Os(1)–Ni(3) pair as shown in Fig. 29.

The parameter JJ(p) is positive because the electron is

transferred from the double-occupied orbitals of the NiII ion

to the single-occupied orbital of the OsIII ion, and such a

transfer gives rise to a ferromagnetic splitting according to the

Goodenough–Kanamori rules.

Another kinetic exchange process associated with the

s-transfer gives rise to the isotropic pseudo-Heisenberg

Hamiltonian for the 5T2g(t
5
2g) #

3A2g(t
6
2ge

2
g) exchange problem.

In fact, this transfer process links two orbitally non-degenerate

eg-subshells of the constituent ions, namely the empty
1A1g(e

0
g)-subshell of the OsIII ion and half-occupied

3A2g(e
2
g)-subshell of the NiII ion. According to the general rule

formulated in Section 4.2 such a transfer should lead to an

isotropic pseudo-Heisenberg interaction between the true

spins sOs = 1/2 and sNi = 1 and hence to the isotropic

Heisenberg effective pseudo-spin-1/2 Hamiltonian acting

within the G7(t
5
2g) # 3A2g(t

6
2ge

2
g) manifold. Therefore, for a

selected pair one can write down the following Hamiltonian:

Ĥeff
s (1,3) = �2J(s)ŝ(1)ŝ(3). (53)

Again, and in accordance with the Goodenough–Kanamori

rules, J(s) 4 0 since this contribution is associated with the

electron transfer from the single-occupied uB orbital to the

empty uA orbital. The total effective exchange Hamiltonian for

the Os(1)–Ni(3) pair contains p and s-contributions:

Ĥeff
ex(1,3) = �2JJt̂Z13

(1)ŝZ13
(3) � 2J>[t̂X13

(1)ŝX13
(3)

+ t̂Y13
(1)ŝY13

(3)], (54)

where the exchange parameters are given by:

JJ = JJ(p) + J(s), J> = J(s). (55)

The density functional theory calculations of the exchange

parameters in cyano-bridged species142 demonstrated that the

interaction through the cyanide s-orbitals is significantly

smaller as compared to the interaction through the p and p*
orbitals. For this reason one can expect that JJ(p) c J(s) and
thus JJ c J>. In addition as follows from eqn (53), both JJ
and J> are positive. The Hamiltonians for the Os(1)–Ni(4),

Os(1)–Ni(5), Os(2)–Ni(3), Os(2)–Ni(4) and Os(2)–Ni(5) pairs

can be written in a similar way.

On the basis of single crystal X-ray data for the NiII3OsIII2
complex, one can simplify the subsequent analysis assuming

an idealized D3h symmetry of the cluster. This assumption

treats the complex as a perfect trigonal bipyramid in which the

Ni triad forms an equilateral triangle and the trigonal axis

passes through the apical Os(1) and Os(2) ions. To simplify

calculations, one can assume that each Os–CN–Ni fragment

has a linear arrangement.

In order to construct the total Hamiltonian of the

NiII3OsIII2 cluster one has to pass from the operators defined

in the local frames to the operators defined in the molecular

frame, and to perform a summation over all Os–Ni pairs (see

ref. 120 for the details). The parameters of this Hamiltonian

are the functions of the exchange integrals JJ and J> and the

angle y between the Z13 and Z axes. Within the adopted

idealized geometry, the angle y is equal to 54.71.

The experimental wT vs. T data for the powder sample

reported in ref. 139 are shown in Fig. 30. It was observed

that, as expected, the NiII3OsIII2 cluster exhibits ferromagnetic

coupling between the NiII and OsIII centers. A plot of wT vs. T

shows a slight increase as the temperature decreases reaching a

maximum of 5.29 emu K mol�1 at 21.6 K; below this

temperature wT decreases abruptly upon cooling. The two

exchange parameters JJ and J> and also the TIP contribution,

wTIP, to the magnetic susceptibility are allowed to vary during

the fitting procedure, but with the restricting condition that

JJ c J> 4 0. The best fit parameters are found to be

JJ = 23.8 cm�1, J> = 1.2 cm�1 and wTIP = 1.4 � 10�3 cm�1.

Fig. 29 Local frame for (NC)5Os(m-CN)NiN5 bioctahedral fragment.

Fig. 30 Comparison of the experimental (red circles) and theoretical

(blue line) wT vs. T curves for the powder sample of NiII3OsIII2.

The theoretical curve was calculated with the set of the best fit

parameters. The g-factors were fixed to geff(Os) = 1.55 and g(Ni) =

2.2. Adapted from ref. 120.
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One can see that the use of this set of the parameters allows us

to reproduce well the magnetic behavior of this cluster

(Fig. 30).

The temperature dependence of wJT and w>T calculated

with the best-fit parameters indicates that w> 4 wJ, which
means that the trigonal Z axis of the bipyramid is the hard axis

of magnetization (or easy NiII3 plane of magnetization). It is

worth noting that the magnetic anisotropy with w> 4 wJ
precludes the existence of a barrier for the magnetization

reversal in the NiII3OsIII2 cluster. This explains the fact that,

in contrast to the trigonal bipyramidal MnIII2MnII3 cluster

which represents a SMM, the NiII3OsIII2 cluster is barrierless

and therefore does not exhibit SMM behavior.

5.5 Polyoxometalates encapsulating CoII clusters: inelastic

neutron scattering study based on pseudo-spin-1/2 Hamiltonian

As has been illustrated in previous sections the presence of

orbital degeneracy often leads to overparametrized exchange

models. Hence, in these cases, the indirect information

extracted from thermodynamic techniques (magnetic suscept-

ibility and specific heat) is insufficient to obtain reliable values

for the electronic and magnetic parameters. It is then mandatory

to have more direct information about the energy splitting

caused by the exchange and about the nature of the wave

functions. In this section we show that the spectroscopic

technique of the Inelastic Neutron Scattering (INS) can provide

this kind of information.

In a series of recent works111–115 the INS technique was

applied to the study of the magnetic exchange in dinuclear,

trinuclear and tetranuclear CoII units. The first example of this

kind represents the Keggin derivative K8[Co2(D2O)(W11O39)]�
nD2O.111 Encapsulation of two CoII ions in the Keggin

structure leads to the dimer shown in black in Fig. 31. The

two CoII ions in this complex are inequivalent. The divalent

high-spin octahedral cobalt ion has a 4T1g ground state

split into six Kramers doublets by the SO coupling and the

low-symmetry crystal field, with the ground Kramers doublet

(effective spin t1 = 1/2) being the only level significantly

populated below 30 K. This ground Kramers doublet can be

described by the effective spin. The divalent cobalt ion in the

tetrahedral environment has a ground orbital singlet 4A2 with

spin s2 = 3/2.

The effective Hamiltonian describing the exchange inter-

action between two CoII ions can be written as

Ĥex = �2J[t̂1Zŝ2Z + Z(t̂1Xŝ
2
X + t̂1Yŝ

2
Y)]. (56)

It should be emphasized that this Hamiltonian describes the

interaction between the pseudo-spin-1/2 (Kramers doublet)

and true spin 3/2. Providing Z a 1, only the total angular

momentum projection MJ (but not the total angular

momentum J) is a good quantum number and the eigenvectors

of the Hamiltonian, eqn (56), are given by the following linear

combinations:

cnðMJÞ ¼
X
J

anðJ;MJÞjt1; s2; J;MJi; ð57Þ

where index n is introduced to distinguish different states with

the same MJ value.

The details of the calculation of neutron cross section are

given in ref. 143 in which the relative INS intensities for all

allowed jcnðMJÞi ! jcn0 ðM0
JÞi transitions have been found.

These intensities as well as their Q-dependence provide

information about the nature of the wave functions. On the

other hand, INS spectra measured with cold neutrons (Fig. 32)

and that measured with thermal neutrons of l = 2.44 Å (see

Fig. 4 in ref. 111) provide the energy level diagram shown in

the left side part of Fig. 33. The best fit parameters are:

J = �2.24 meV, Z = 0.33. The value of the anisotropy

parameter Z = 0.33 indicates that the situation is intermediate

between the Heisenberg (Z = 1) and the Ising (Z = 0) limits,

and it is closer to the Ising one. The right-hand side of Fig. 33

shows the energy levels and corresponding wave-functions

calculated with this set of parameters. The obtained best fit

parameters were further used to calculate the temperature

dependence of the magnetic susceptibility. In this calculation

the g value for the tetrahedral CoII ion was assumed to be

equal to 2, for the octahedral site the ratio Z = g>/gJ was

fixed, and g> was the only adjustable parameter. The best fit

to the experimental wT vs. T curve was achieved for g> = 2.3

that corresponds to gJ = 7.0. The wT vs. T curve calculated

with this set of parameters is in excellent agreement with the

Fig. 31 (a) The structure of the K8[Co2(D2O)(W11O39)] complex. The

black polyhedra contain an oxo coordinated CoII ions, and the

white octahedra contain an oxo coordinated W atoms. (b) Octahedral-

tetrahedral CoII pair coupled through the magnetic exchange.

Fig. 32 Inelastic neutron scattering INS spectra with cold neutrons.

The measurements were performed at temperatures of 1.7, 10 and 30 K

with incident neutron wavelength l = 4.1 Å.
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experimental data (Fig. 34). The obtained gJ and g> are

reasonable g-values for a CoII site with a slightly distorted

octahedral coordination.

Later on the exchange interaction in the tetranuclear cobalt

containing cluster [Co4(H2O)2(PW9O34)2]
10� was studied with

the aid of INS technique combined with the analysis of

thermodynamic properties, including specific heat and

magnetic susceptibility.112 The structure of this compound is

shown in Fig. 35. It represents a tetrameric rhomblike

centrosymmetrical cluster Co4O16 of D2h symmetry formed

by four coplanar edge-sharing CoO6 octahedra. The following

effective pseudo-spin-1/2 exchange Hamiltonian was used to

describe the pattern of low-lying energy levels:

Ĥex ¼ �2
X

a¼X ;Y ;Z
½Jaðt̂1at̂3a þ t̂1at̂

4
a þ t̂2at̂

3
a þ t̂2at̂

4
aÞ þ J 0at̂

1
at̂

2
a�:

ð58Þ

In eqn (58) the two dominant exchange pathways J and J0

correspond to the interactions along the edges and the short

diagonal of the rhomb, respectively, meanwhile the inter-

actions along the long diagonal are neglected (Fig. 31). The

analysis of the INS spectra led us to the following set of

parameters: JZ = 1.51 meV, JX = 0.70 meV, J 0Z ¼ 0:46meV;

J 0X ¼ 0:44meV; r ¼ JX=JY ¼ J 0X=J
0
Y ¼ 1:6. Both interactions

turned out to be ferromagnetic and anisotropic with JZ 4 JX,

JY and J 0Z4J 0X ; J
0
Y . This set of parameters allows us to

reproduce the observed temperature dependence of the

magnetic heat capacity and also the experimental wT vs.

T curve.

The INS technique was also used for the study of the

exchange interactions in the more complex pentameric CoII

cluster [Co3W(D2O)2(CoW9O34)2]
12�, which contains three

octahedral and two tetrahedral oxo-coordinated CoII ions.113

This study revealed two kinds of highly anisotropic exchange

interactions in this compound: a ferromagnetic interaction

between the octahedral CoII ions and an antiferromagnetic

interaction between the octahedral and the tetrahedral CoII

ions. The set of parameters of the effective pseudo-spin-1/2

Hamiltonian derived from the analysis of INS spectra was

shown to reproduce in a satisfactory manner the susceptibility,

magnetization, and INS properties of the compound.

Finally, we should mention the INS investigations of two

trimeric CoII clusters: [Co3W(D2O)2(ZnW9O34)2]
12� 114 and

[(NaOH2)Co3(H2O)(P2W15O56)2]
17�.115 In these cases the

INS experimental data indicate that a model based on

anisotropic exchange interactions is insufficient to describe

the experiment. Thus, the different orientations of the

anisotropic exchange tensors must be taken into account

which are correlated with the molecular symmetries of the

complexes. Summarizing one can conclude that the INS

technique proved to be a very efficient tool for a reliable and

unambiguous determination of the parameters involved in the

phenomenological pseudo-spin-1/2 Hamiltonian.

6. Conclusions and outlook

The aim of the paper has been to describe in an accessible

manner how the orbital degeneracy affects both the exchange

interaction and the magnetic anisotropy of molecular

magnetic clusters. We have discussed the conceptual aspects

of the problem and illustrated how the theoretical approaches

and methodology can be applied to describe the magnetic

properties of the systems with unquenched orbital angular

momentum. We have pointed out that the orbital degeneracy

represents a complicated many-side problem. Even if one takes

into account all advantages provided by the theoretical

approaches to the problem of the orbitally-dependent

exchange, the full description of the magnetic and spectro-

scopic behavior of these complex systems remains a challenge.

For this reason we have considered a number of specially

Fig. 33 Experimentally determined energy pattern K8[Co2(D2O)-

(W11O39)] material (left) and that calculated with the best fit parameters

J = �2.24 meV, Z = 0.33 (right). The observed cold (I, II, III, IV)

and hot (a, a0, I0) transitions and the calculated wave-functions are

shown.

Fig. 34 Measured magnetic susceptibility of a polycrystalline sample

measured between 2 and 50 K (full circles) and wT vs. T curve

calculated with the set of parameters: J = �2.24 meV, Z = 0.33,

g> = 2.3 gJ = 7.0/(solid line).

Fig. 35 The structure of the Co4O16 cluster and the network of the

exchange parameters.
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selected model systems that illustrate in a simple but profound

manner the main features of the molecular magnets which are

related to their orbital degeneracy.

The key topics and conclusions of this review can be

summarized as follows:

(1) The major electronic factors controlling the exchange

anisotropy have been discussed for dinuclear systems

composed by orbitally-degenerate metal ions. The character

of this anisotropy was shown to depend on both the electronic

configurations and terms of the constituent mononuclear

moieties (single-ion crystal field parameters), and on the

overall symmetry of the pair. This last aspect applies to taking

into account the relative magnitude of the different electron

transfer pathways between unfilled d-shells contributing to the

kinetic exchange. Thus, the exact form of the exchange

Hamiltonian, which in these cases involves both spin and

orbital operators, will be specific for each system as it will

depend on the exact geometry of the system. This result is in

sharp contrast to what happens when we are dealing with

non-degenerate metal ions, since in these cases an HDVV spin

Hamiltonian, whose form is totally independent from the

geometry of the system, is valid. Nevertheless, we have also

shown that in some special cases, when the total orbital

degeneracy of the pair is equal to the number of the equivalent

transfer pathways or when the electron transfer is only efficient

within the orbitally nondegenerate electronic subshells, the

interaction between the orbitally-degenerate ions becomes

orbitally independent and the exchange Hamiltonian takes

on a pseudo-Heisenberg spin form. This latter situation is

exemplified by the clusters composed of high-spin CoII ions for

which the so called Lines model based on the pseudo-Heisenberg

Hamiltonian is widely used. In all other cases the exchange

interaction between metal ions with unquenched orbital

angular momenta proves to be orbitally-dependent and highly

anisotropic, even when it couples isotropic (octahedrally

coordinated) metal ions;

(2) In the case of strong SO interaction the effective

Hamiltonian for a dimer consisting of half-integer spins was

projected onto the subspace of low-lying Kramers doublets. In

this way, a pseudo-spin-1/2 Hamiltonian was derived. Unlike

the commonly accepted phenomenological approaches based

merely on the symmetry arguments (such as the Lines model),

the described procedure is grounded on microscopic

considerations and hence allows us to establish a link between

the real parameters of the system and the effective parameters

of the pseudo-spin-1/2 Hamiltonian;

(3) A series of molecular magnets based on the orbitally

degenerate ions have been analyzed: (i) the magnetic

properties of the dinuclear face-sharing bioctahedral unit

[Ti2Cl9]
3� in Cs3Ti2Cl9 have been discussed with a special

emphasis on the experimentally observed magnetic anisotropy;

(ii) the orbitally-dependent exchange is considered in the

rare-earth compounds Cs3Yb2Cl9 and Cs3Yb2Br9 and the

origin of surprising isotropy is revealed; (iii) a zig-zag chain

composed of the Co(H2L)(H2O) units and exhibiting

non-collinear spin structure is considered and the nature of

SCM behavior of this compound is shown to be a result of

orbitally dependent contributions; (iv) a pseudospin-1/2

Hamiltonian approach was applied to the study of the

magnetic anisotropy in the trigonal bipyramidal Ni3Os2
compound; (v) finally, the pseudospin-1/2 Hamiltonian

approach has also been illustrated by studying the inelastic

neutron scattering spectra and magnetic susceptibility of

polyoxometalates encapsulating CoII clusters of various

nuclearities and symmetries. The analysis of these spectro-

scopic measurements has allowed us to test the validity of the

pseudospin-1/2 Hamiltonian approach, demonstrating the

presence of anisotropic exchange interactions in these CoII

clusters.

Finally, it is worth noting that the importance of the

anisotropic terms in the exchange Hamiltonian (mainly

coming from the single-ion anisotropy) was understood at

the early stage of magnetochemistry. These anisotropic inter-

actions are crucial, for example, for EPR, but, in general, they

are rather small in HDVV systems. In the last years the interest

in understanding and controlling the magnetic anisotropy in

molecular systems has been progressively growing. This situation

is due to the discovery of the molecular nanomagnets (SMMs

and SCMs) in the 90’s, since in these systems the formation of

the energy barrier for the reversal of magnetization has shown

to be connected to the magnetic anisotropy. Thus, although

many efforts have been applied to control the anisotropy

barrier in these systems this task remains a challenging goal

that requires new approaches. In fact, in the SMMs reported

to date the blocking temperatures do not exceed a few Kelvin,

which are too low for application of these systems as the

data-storage units. Therefore, the design of new SMMs with

higher blocking temperatures and thus with higher magnetization

reversal barriers represents an important goal in the field of

molecular magnetism. Particularly, the increase of the full spin

S seemed to be a promising way to design SMMs with higher

blocking temperatures. However, as has been recently demon-

strated by Waldmann144 the parameter DS proves to be

proportional to S�2 and hence the barrier Db does not

rise with the increase of S. Probably for this conceptually

important reason the attempts to increase S by the synthesis of

big spin-clusters with high values of the ground state spin has

not yet produced better SMMs. Furthermore, in order to have

ground spin states well-separated in energy from the excited

states, one needs also to maximize the size of the exchange

interactions. As follows from the present review, one of the

promising ways of increasing the magnetic anisotropy in

SMMs is to go beyond HDVV systems and to focus on the

magnetic clusters composed of orbitally degenerate metal ions

that have unquenched orbital angular momenta.145 As

distinguished from the spin-clusters in which the magnitude

of the barrier depends mainly on the relatively small ZFS of

the ground spin-state, the barrier in the systems comprising

metal ions with unquenched orbital angular momenta can be

essentially larger. At the same time, more knowledge is

required about the relaxation processes in degenerate systems

that are undoubtedly faster than in spin systems and,

moreover, have specific features due to involvement of the

orbital states directly coupled to phonons. In any case, the

design of new SMMs based on orbitally degenerate ions seems

to be a promising route for reaching higher energy barriers

and for enhancing the blocking temperature. In this context,

it has been shown that by taking advantage of the strong
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magnetic anisotropy of the rare-earth metal ions (mainly

lanthanides, but also actinides), one can obtain mononuclear

single-molecule magnets exhibiting high energy barriers.146,147

As a final comment we would like to underscore the point

that the scope of this review did not allow us to discuss several

other important questions related to the degeneracy. For

example, we did not address the problem of the Jahn–Teller

(JT) effect which is an essential part of the theory of the

systems exhibiting orbital degeneracy (see books 148 and 149

and refs. therein) and which is expected to play an important

role in the study of exchange-coupled systems containing

degenerate ions. On the other hand, the discussion of ab initio

calculations to get additional information about both the

exchange and the JT vibronic parameters is also out of the

scope of this review. In this respect the reader is referred to a

series of the papers of Atanasov et al.150 in which a combined

ligand field and DFT analysis of the magnetic anisotropy and

JT effect in oligonuclear complexes is described.

Abbreviations

HDVV model Heisenberg–Dirac–Van Vleck model

SO spin-orbital

ZFS zero-field splitting

INS inelastic neutron scattering

TIP temperature independent

paramagnetism

CT charge transfer

SMM single molecule magnet

SCM single chain magnet

Jahn–Teller effect JT effect

Acknowledgements

B.T. and K.R.D. gratefully acknowledge financial support

from the USA-Israel Binational Science Foundation, BSF

(Grant No. 2006498). B.T. thanks the Israel Science Foundation,

ISF, for the financial support (grant no. 168/09). K.R.D. is

grateful for support of this research by the Department of

Energy. A.V.P. and S.I.K. gratefully acknowledge financial

support from STCU (project N 5062). J.M.C.J. and E.C.

thank Spanish MICINN (CSD2007-00010 CONSOLIDER-

INGENIO in Molecular Nanoscience, MAT2007-61584,

CTQ-2008-06720 and CTQ-2005-09385), Generalitat Valenciana

(PROMETEO program), and the EU (MolSpinQIP project

and ERC Advanced Grant SPINMOL) for financial support.

We also thank the people that during many years have been

collaborating with us in molecular magnetism. Their names

appear in this review paper.

References

1 D. Gatteschi, R. Sessoli and J. Villain, Molecular Nanomagnets,
Oxford University Press, Oxford, 2006.

2 (a) K. R. Dunbar and E. Coronado (ed.) Inorg. Chem., 2009,
48(8), Special issue on Molecular Magnetism; (b) E. Coronado
and K. R. Dunbar, Inorg. Chem., 2009, 48, 3293.

3 (a) D. Gatteschi and R. Sessoli, Angew. Chem., Int. Ed., 2003, 42,
268; (b) D. Gatteschi and R. Sessoli, J. Magn. Magn. Mater.,
2004, 272–276, 1030.

4 A. Bencini and D. Gatteschi, Electron Paramagnetic Resonance of
Exchange Coupled Systems, Springer, Berlin, 1990.

5 O. Kahn, Molecular Magnetism, VCH, New York, 1993.
6 O. Waldmann, Coord. Chem. Rev., 2005, 249, 2550.
7 Magneto-structural Correlation in Exchange Coupled Systems, ed.

R. Willett, D. Gatteschi and O. Kahn, NATO ASI Series C140,
Kluwer, Dordrecht, 1985.

8 J. Miller and A. Epstein, MRS Bull., 2000, 21.
9 G. Christou, D. Gatteschi, D. N. Hendrickson and R. Sessoli,

MRS Bull., 2000, 25, 66.
10 R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent,

K. Folting, D. Gatteschi, G. Christou and D. N. Hendrickson,
J. Am. Chem. Soc., 1993, 115, 1804.

11 R. Sessoli, D. Gatteschi, A. Caneschi and M. A. Novak, Nature,
1993, 365, 141.

12 J. M. Clemente-Juan and E. Coronado, Coord. Chem. Rev., 1999,
193–195, 361.

13 M. Verdaguer, A. Bleuzen, J. Vaissermann, M. Seuileman,
C. Desplanches, A. Scuiller, C. Train, G. Gelly, C. Lomenech,
I. V. P. Rosenman, C. Cartier and F. Villian, Coord. Chem. Rev.,
1999, 190–192, 1023.

14 (a) B. S. Tsukerblat and M. I. Belinsky, Magnetochemistry and
Radiospectroscopy of Exchange Clusters, Pub. Stiintsa (Acad. Sci.
Moldova), Kishinev, 1983 (Rus); (b) B. S. Tsukerblat, Group
Theory in Chemistry and Spectroscopy, Dover, Mineola, New
York, 2006.

15 B. S. Tsukerblat, M. I. Belinskii and V. E. Fainzilberg,
Magnetochemistry and Spectroscopy of Transition Metal
Exchange Clusters, in Soviet Sci. Rev. B, ed. M. E. Vol’pin,
Harwood Acad. Pub., New York, 1987, vol. 9, pp. 337–481.

16 J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado,
A. V. Palii and B. S. Tsukerblat, Magnetic Properties of
Mixed-Valence Systems: Theoretical Approaches and Applications,
in Magnetoscience—From Molecules to Materials, ed. J. Miller
and M. Drillon, Willey-VCH, 2001, pp. 155–210.

17 V. Ya. Mitrofanov, A. E. Nikiforov and V. I. Cherepanov,
Spectroscopy of Exchange-Coupled Complexes in Ionic Crystals,
Moskow, Nauka, 1985 (Rus).

18 E. Coronado, R. Georges and B. S. Tsukerblat, Exchange
Interactions: Mechanisms, in Localized and Itinerant Molecular
Magnetism: From Molecular Assemblies to the Devices, NATO
ASI Series, ed. E. Coronado, P. Delhaes, D. Gatteschi and
J. Miller, Kluwer Acad. Publishers, 1996, pp. 65–84.

19 J. M. Clemente, R. Georges, A. V. Palii and B. S. Tsukerblat,
Exchange Interactions: Spin Hamiltonians, Kluwer Acad.
Publishers, 1996, pp. 85–104.

20 R. Bŏca, Theoretical Foundations of Molecular Magnetism,
Elsevier, Amsterdam, 1999.

21 G. Christou, D. Gatteschi, D. N. Hendrickson and R. Sessoli,
MRS Bull., 2000, 25, 66.

22 R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent,
K. Folting, D. Gatteschi, G. Christou and D. N. Hendrickson,
J. Am. Chem. Soc., 1993, 115, 1804.

23 R. Schnalle and J. Schnack, Int. Rev. Phys. Chem., 2010, 29, 403.
24 G. J. Eppley, H. L. Tsai, N. de Vries, G. Christou and

D. N. Hendrickson, J. Am. Chem. Soc., 1995, 117, 301.
25 S. M. J. Aubin, Z. Sun, I. A. Guzei, A. L. Rheingold, G. Christou

and D. N. Hendrickson, Chem. Commun., 1997, 2239.
26 M. R. Cheesman, V. S. Oganesyan, R. Sessoli, D. Gatteschi and

A. J. Thomson, Chem. Commun., 1997, 1677.
27 S. L. Castro, Z. Sun, C. M. Grant, J. C. Bollinger,

D. N. Hendrickson and G. Christou, J. Am. Chem. Soc., 1998,
120, 2365.

28 J. C. Goodwin, R. Sessoli, D. Gatteschi, W. Wernsdorfer,
A. K. Powell and S. L. Heath, J. Chem. Soc., Dalton Trans.,
2000, 1835.

29 C. Boskovic, E. K. Brechin, W. E. Strteib, K. Folting,
J. C. Bollinger, D. N. Hendrickson and G. Christou, J. Am.
Chem. Soc., 2002, 124, 3725.

30 C. P. Berlinguette, D. Vaughn, C. Cañada-Vilalta, J.-R.
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H. Büttner and S. Janssen, Inorg. Chem., 2001, 40, 1943.

114 J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño,
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124 B. Leuenberger and H. U. Güdel, Mol. Phys., 1984, 51, 1.
125 A. Ceulemans, L. F. Chibotaru, G. A. Heylen, K. Pierloot and

L. G. Vanquickenborne, Chem. Rev., 2000, 100, 787.
126 B. Briat, O. Kahn, I. Morgenstern-Badarau and J. C. Rivoal,

Inorg. Chem., 1981, 20, 4193.
127 L. J. De Jongh and A. R. Miedema, Adv. Phys., 1974, 23, 1.

128 R. L. Carlin, Magnetochemistry, Springer, Berlin, 1986.
129 A. Maeda and H. Sugimoto, J. Chem. Soc., Faraday Trans., 1986,

2, 82.
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